
A8 Test Plan
Team 10 – Zombie Apocalypse

Chad Nelson, Cole Anagnost, Tas Fox, Tim Flanigan



Test Plan

Zombie Apocalypse

Chad Nelson
Cole Anagnost
Tasewell Fox
Tim Flanigan



1. TEST PLAN

1.1 SystemController

Author: Chad Nelson

Complexity:
The SystemController is not the most complex part of the system, but it must work perfectly
because it is critical to the base architecture of the system.

Frequently Used Pieces:
The SystemController is perhaps the most frequently used component of the client system
because it holds reference to all Screens and Services. Any screen that uses a Service must
call SystemController.getInstance() in order to get the singleton instance of the
SystemController (alternatively, they could call new SystemController() which would return
the singleton instance). Another commonly used function of the SystemController is to
animate the transition between Screen that occurs when a Screen calls
animateScreenChange(...).

Test Plan:
The test plan we originally used involved only manual tests. These tests were organized
into a spreadsheet. After a revision, we would rerun all the tests and add a column in the
spreadsheet for that results of that test pass on the revision. In this way, we could see
what tests we fixed and broke from revision to revision.

In an ideal world, all tests would be automated. There are two types of functions: functions
that take inputs and return a value based on those inputs, and functions that access other
parts of the system to manipulate data. Writing unit tests for input/output functions is a
simple task, similar to Junit testing. To accurately do unit tests on functions access complex
parts of the system, we would use ASmock, and open source project on SourceForge (link).
ASmock would allow us to create mock objects, replacing components of the system, and
allowing our unit tests to ensure that the function they're testing continue to call the correct
functions across the system. Mocking objects also let's us separate unit tests from
integration tests.

1.2 DataServer

Author: Chad Nelson

Complexity:
The DataServer is a multi-threaded process that must manage race conditions and
appropriately handle cases when the user logs off.

Frequently Used Pieces:
Some of the most frequently used components of the server are function handlers for
logging in and updating user variables (like cash, weapons, score, ammo, etc).

Test Plan:
The test plan we used was a set of very high level tests that manually confirmed the end

https://sourceforge.net/projects/asmock/


result of having a server in the background.

A better way to test the Server would be to use Junit tests. We could also mock out the
socket connection(s) for the unit tests. To test the integration between the server and
client, we could use tests that confirmed the interface between the client and server
matched. These tests would give us a greater amount of information if and when
something broke.

1.3 Sound Service

Author: Tas Fox

Complexity: This is complex because each user must have a dedicated sound channel so
they can all play sounds. This means that at any moment several sounds can be played.
These sounds include weapon fires, reloading, and weapon empty.

Frequently Used Pieces: Some of the most frequently used operations are local call and
server call.

Test Plan: The test plan for the sound service was to do manual tests with logged output to
make sure all sounds played as expected. Automated tests are not practical for this test
because you need someone to listen to make sure the proper sounds are being played at
the proper time.

1.4 Weapon Fire

Author: Tas Fox

Complexity: Every time a weapon fires its trajectory must be calculated, it must be
animated, and it must be tested to see if it hits any zombies

Frequently Used Pieces: Firing functions, draw bullets, hit test

Test Plan: The test plan includes a mix of automated and manual tests. The automated
tests will set strict conditions inside the game that guarantee a target will be hit with each
test. The test will be repeated multiple times and the output will be logged using the system
debugger.

1.5 BuyScreen

Author: Tim Flanigan

Complexity:
The buy screen is used to manage weapons and money that the player has access too. This
is a large feature in the game and must work correctly to store player information and
change it accordingly.

Frequently Used Pieces:
There are two main functions that are most frequently used in the BuyScreen class. The
first is showWeaponStats, which is used to show weapon information when selected. The



second is buyWeapon, which purchases the selected weapon or buys ammunition.

Test Plan:
Our test plan for this screen was mainly manual testing. We would select all the weapons to
make sure that all the stats and pricing on the weapon was correct. We would then try to
purchase the weapon and make sure that it was possible, and that money was deducted
correctly. We also made sure that when the weapon was bought, it was actually stored in
the users account information for later use.

Although we did manual testing, automated testing would not have been hard to set up.
We would need to set up a test to either select the weapons or buy them, and then check

variables to make sure that they were adjusted correctly.

1.6 HighScoresScreen

Author: Tim Flanigan

Complexity:
The HighScoreScreen itself isn't too complicated, however, it makes a call to the server to
retrieve the highscores for all users from the database, and then splits that result and puts
it into a table format for easy viewing for the user. The complexity lay in the integration
between the screen and the database on the server.

Frequently Used Pieces:
The HighScoresScreen has two main functions that are used. The first one is the init
function, which makes the call to the database to retrieve the high score information
pertaining to the user. The information is serialized and returned to the class as a string
containing all the information. The second function used in this class is the loadScores
function. This function Splits the serialized data recieved from the database that contains
all the high score information, and puts it into a table widget.

Test Plan:
The testing for the HighScoresScreen was done manually. We had users play the game
enough to get statistics for an account, and then viewed the highs core screen to make sure
that the highscores were correctly displayed on to the screen.

To test the init function and make sure that the information received from the database was
correct, it could just be printed to the screen to be manually check to make sure that all the
correct information was included.

1.7 LevelService

Author: Cole Anagnost

Complexity:
The LevelService tracks all the variables about a game level including zombies, players,
pickups, bullets, and bloodspatters.

Frequently Used Pieces:
The main functions used in the LevelService are the functions for remote updates (such as
zombie and pickup positions) as well as the functions for collision detections (either with a
boundary or with a pickup on the level).



Test Plan:
The testing for LevelService was done manually by setting specific variables and testing in
single player or multi-player mode (depending on the function being tested).

Ideally these tests would have been automated to ensure that no bugs slipped through the
manual testing phase.

1.8 ClientService

Author: Cole Anagnost

Complexity:
The ClientService holds the connection to the server. It is responsible for communicating
with the server to send and receive player data (such as money, weapons, and ammo) and
game synchronization data (such as player and zombie positions during multi-player
games).

Frequently Used Pieces:
The main functions used in the ClientService are the methods that send and receive socket
data. The socketData function receives a string from the server, and splits it into an opcode
and a list of arguments delimited by a pipe character ("|", i.e.
"LOGIN:username|password"). These are passed to the receiveData function, which calls
the appropriate function based on the opcode and passes in the provided argument list.
The sockSend function loops back messages with opcodes relating to gameplay updates (in

both single and multi-player modes) and sends them to the server (only in multi-player).

Test Plan:
The testing for the ClientService was done manually by playing the game in both single and
multi-player mode and examining the messages sent and received by the client.

Ideally the tests would be automated using ASmock to ensure that the correct functions are
being called, and that the incoming data is parsed correctly.

2. EXAMPLE OF ORIGINAL TEST PLAN

The test plan that we used during the term was a simple document used to keep track of
the results of manual tests. A partial example of the document is shown below:




	1. Test Plan
	1.1 SystemController
	1.2 DataServer
	1.3 Sound Service
	1.4 Weapon Fire
	1.5 BuyScreen
	1.6 HighScoresScreen
	1.7 LevelService
	1.8 ClientService

	2. Example of Original test plan

