A8 Test Plan

Team 10 - Zombie Apocalypse
Chad Nelson, Cole Anagnost, Tas Fox, Tim Flanigan

Test Plan

Zombie Apocalypse

= —
-

Chad Nelson
Cole Anagnost
Tasewell Fox
Tim Flanigan

1. TEST PLAN

1.1 SystemController

Author: Chad Nelson

Complexity:
The SystemController is not the most complex part of the system, but it must work perfectly
because it is critical to the base architecture of the system.

Frequently Used Pieces:

The SystemController is perhaps the most frequently used component of the client system
because it holds reference to all Screens and Services. Any screen that uses a Service must
call SystemController.getInstance() in order to get the singleton instance of the
SystemController (alternatively, they could call new SystemController() which would return
the singleton instance). Another commonly used function of the SystemController is to
animate the transition between Screen that occurs when a Screen calls
animateScreenChange(...).

Test Plan:

The test plan we originally used involved only manual tests. These tests were organized
into a spreadsheet. After a revision, we would rerun all the tests and add a column in the
spreadsheet for that results of that test pass on the revision. In this way, we could see
what tests we fixed and broke from revision to revision.

In an ideal world, all tests would be automated. There are two types of functions: functions
that take inputs and return a value based on those inputs, and functions that access other
parts of the system to manipulate data. Writing unit tests for input/output functions is a
simple task, similar to Junit testing. To accurately do unit tests on functions access complex
parts of the system, we would use ASmock, and open source project on SourceForge (link).
ASmock would allow us to create mock objects, replacing components of the system, and
allowing our unit tests to ensure that the function they're testing continue to call the correct
functions across the system. Mocking objects also let's us separate unit tests from
integration tests.

1.2 DataServer

Author: Chad Nelson

Complexity:
The DataServer is a multi-threaded process that must manage race conditions and
appropriately handle cases when the user logs off.

Frequently Used Pieces:
Some of the most frequently used components of the server are function handlers for
logging in and updating user variables (like cash, weapons, score, ammo, etc).

Test Plan:
The test plan we used was a set of very high level tests that manually confirmed the end

https://sourceforge.net/projects/asmock/

result of having a server in the background.

A better way to test the Server would be to use Junit tests. We could also mock out the
socket connection(s) for the unit tests. To test the integration between the server and
client, we could use tests that confirmed the interface between the client and server
matched. These tests would give us a greater amount of information if and when
something broke.

1.3 Sound Service

Author: Tas Fox

Complexity: This is complex because each user must have a dedicated sound channel so
they can all play sounds. This means that at any moment several sounds can be played.
These sounds include weapon fires, reloading, and weapon empty.

Frequently Used Pieces: Some of the most frequently used operations are local call and
server call.

Test Plan: The test plan for the sound service was to do manual tests with logged output to
make sure all sounds played as expected. Automated tests are not practical for this test
because you need someone to listen to make sure the proper sounds are being played at
the proper time.

1.4 Weapon Fire

Author: Tas Fox

Complexity: Every time a weapon fires its trajectory must be calculated, it must be
animated, and it must be tested to see if it hits any zombies

Frequently Used Pieces: Firing functions, draw bullets, hit test
Test Plan: The test plan includes a mix of automated and manual tests. The automated
tests will set strict conditions inside the game that guarantee a target will be hit with each

test. The test will be repeated multiple times and the output will be logged using the system
debugger.

1.5 BuyScreen

Author: Tim Flanigan

Complexity:

The buy screen is used to manage weapons and money that the player has access too. This
is a large feature in the game and must work correctly to store player information and
change it accordingly.

Frequently Used Pieces:
There are two main functions that are most frequently used in the BuyScreen class. The
first is showWeaponStats, which is used to show weapon information when selected. The

second is buyWeapon, which purchases the selected weapon or buys ammunition.

Test Plan:

Our test plan for this screen was mainly manual testing. We would select all the weapons to
make sure that all the stats and pricing on the weapon was correct. We would then try to
purchase the weapon and make sure that it was possible, and that money was deducted
correctly. We also made sure that when the weapon was bought, it was actually stored in
the users account information for later use.

Although we did manual testing, automated testing would not have been hard to set up.

We would need to set up a test to either select the weapons or buy them, and then check
variables to make sure that they were adjusted correctly.

1.6 HighScoresScreen

Author: Tim Flanigan

Complexity:

The HighScoreScreen itself isn't too complicated, however, it makes a call to the server to
retrieve the highscores for all users from the database, and then splits that result and puts
it into a table format for easy viewing for the user. The complexity lay in the integration
between the screen and the database on the server.

Frequently Used Pieces:

The HighScoresScreen has two main functions that are used. The first one is the init
function, which makes the call to the database to retrieve the high score information
pertaining to the user. The information is serialized and returned to the class as a string
containing all the information. The second function used in this class is the loadScores
function. This function Splits the serialized data recieved from the database that contains
all the high score information, and puts it into a table widget.

Test Plan:

The testing for the HighScoresScreen was done manually. We had users play the game
enough to get statistics for an account, and then viewed the highs core screen to make sure
that the highscores were correctly displayed on to the screen.

To test the init function and make sure that the information received from the database was

correct, it could just be printed to the screen to be manually check to make sure that all the
correct information was included.

1.7 LevelService

Author: Cole Anagnost

Complexity:
The LevelService tracks all the variables about a game level including zombies, players,
pickups, bullets, and bloodspatters.

Frequently Used Pieces:

The main functions used in the LevelService are the functions for remote updates (such as
zombie and pickup positions) as well as the functions for collision detections (either with a
boundary or with a pickup on the level).

Test Plan:
The testing for LevelService was done manually by setting specific variables and testing in
single player or multi-player mode (depending on the function being tested).

Ideally these tests would have been automated to ensure that no bugs slipped through the
manual testing phase.

1.8 ClientService

Author: Cole Anagnost

Complexity:

The ClientService holds the connection to the server. It is responsible for communicating
with the server to send and receive player data (such as money, weapons, and ammo) and
game synchronization data (such as player and zombie positions during multi-player
games).

Frequently Used Pieces:

The main functions used in the ClientService are the methods that send and receive socket
data. The socketData function receives a string from the server, and splits it into an opcode
and a list of arguments delimited by a pipe character ("|", i.e.
"LOGIN:username|password"). These are passed to the receiveData function, which calls
the appropriate function based on the opcode and passes in the provided argument list.

The sockSend function loops back messages with opcodes relating to gameplay updates (in
both single and multi-player modes) and sends them to the server (only in multi-player).

Test Plan:
The testing for the ClientService was done manually by playing the game in both single and
multi-player mode and examining the messages sent and received by the client.

Ideally the tests would be automated using ASmock to ensure that the correct functions are
being called, and that the incoming data is parsed correctly.

2. EXAMPLE OF ORIGINAL TEST PLAN

The test plan that we used during the term was a simple document used to keep track of
the results of manual tests. A partial example of the document is shown below:

125
1
127
1
1

i1

1.3.2

134
1.4

141
14.2

14.3
1.4.4
145
1.4.6

=1
5.2
53
5.4
5.5

6.2
6,3

6.5
&.6

1.6.7
187

1
1.1
1.7.2
1
181
182

Ml Sra you are wsing a Windows PG
Malke suna Adoba Flash Flayer is installed
Make sure the server [running at chad game-host.org
Logging In
Cormati @ navw usar

1. Start the program

2. Ensure the Login Screen is displayed

3. Enter a new unigus username, password, and confirmation of the password in the create

new Lser promads
4, Click lha croale user bubion
5. ¥ou shoud be taken to tha Main Menu and be logged in
Raceive an emer when creating a new user with an old username:
1. Stan the program
2. Ensure the Login Scroen is displayed
3. Enter gn old usemname, password, and confirmation of the pasaword In the creals new
usar prompls
4. [Ensura the screen displays an indicaton that the wsemame is already taken
Faoeive an emos when creating @ new uses with unmatehed passwaords:
1. Start the program
2. Ensura the Login Soresn is displayed

3. Enter @ naw unigue usemama, password, and confirmalion of the password in the creals

new user promats. Make sure the password and confirmation do not match
4. Ensure the screen displayve an indicabion that the pasawarnds do not maich
Login as an exsling user
Start the program
Ensura the Login Screen is displayed
Enter yaur usemame and passwaord
Click the kagin button
‘ou should be taken to the Main Menu and be logged in
Fecane an emar whan [againg in 25 an existing usar with &n Unknaean Lusamama
Fecelve an emas when logaing 0 as an exiating usar with the wiong password
Ensure thal passwords are nod displyed as dear text, and instead ane show as *
Main Menu
Ensure clicking the Sngle Flayver bution tases you o the Leval Salaction Screan
1. Start the program and legn
2. Ensure you ara ai the Man Menu
3. Click tha button that says "Singla Player”
4. Ensure you are taken 1o the Level Seection Screen
Enaura clicking the Mulliplayes bullen lakes you ba Ihe Lobby Scraan
Ensura clicking lhe High Scomes bulion takes you o the High Scores Scroen
Ensure clicking tha Tutarial or Halp button iake you fo the Tutonal Screen
Level Seect Screen
I wou are 8 new user, ensure only 1he Gt level = avalable 1o vou,

PN Ry

If you arer an existing usar, ansura thet on'y the first n levels are avalabla to play (whara n is

ther number of compleded levels + 1)

Ensura you are able to go back to the Mam Manu by cicking a button

Ensure thal you can go o the Buy Screen

Engura hal you can selecl a level and begn plaving it in Single Playes made.

Engsura this wisigan saloection pard is visibe

Waapan Salaction Panel

Ensure the weagon selection pane is visble in the Buy Screen and Level Select Screen
Ensura lhal 8 weapans you have purchasad and own ane displayed on tha ganal
Ensura thal the armma amownds listed are accurain

Ensura that you may select one primary and one secondary waapon

Engura that you start tha level with the weapons that you heve seleched

Buy Screan

Ensura the "Main Manu® butlon (akes you back b the Bain Menu

Ensura there is & continue bution that's text changaes

The conbaus pultan will read “Relry” if wou just fallad & leval and will l2? wou retry tha level
The conbaue bellan will read “Next Laval™ il you jusl complabed a leval

Thar contnue butlon will read “Gao back” if vou fusl camae from tha Level Select Screan
Engura that you are sine Iz elick an each WEapan n the store, and that relevant slats ara
displayed

Ensure you may oanly buy weapons for whch you have encugh monsy

If you awn a gun, then the Buy button shall read "Buy Armmo® and the price will be less than

the quin

High Scores Screen

Ensure that a ranked and orderad st of wsers with the highest score is displayed
Ensura a back bution exists be go back to the main menu

Tulorial Screan

Ensurn accurabe directions for how o play the game are displyyed

Ensura a back bution axists to go back to tha main menu

12272009
v, 102

1112002
i, 132

Fags

FPass

	1. Test Plan
	1.1 SystemController
	1.2 DataServer
	1.3 Sound Service
	1.4 Weapon Fire
	1.5 BuyScreen
	1.6 HighScoresScreen
	1.7 LevelService
	1.8 ClientService

	2. Example of Original test plan

