
A7 SDD-3
Team 10 – Zombie Apocalypse

Chad Nelson, Cole Anagnost, Tas Fox, Tim Flannigan

Team Work Distribution Form
Assignment A7
Group #10
Name % of

Effort
Extra Work Description of Work

Chad Nelson 25% SDD-3 Assignment
Cole Anagnost 25% SDD-3 Assignment
Tas Fox 25% SDD-3 Assignment
Tim Flanigan 25% SDD-3 Assignment

Meeting Minutes
Name Present Late > 5

min
Informed of Absence? Scribe?

Chad Nelson Yes No - -
Cole Anagnost Yes No - Yes
Tas Fox Yes No - -
Tim Flanigan Yes No - -

Com
Name Old Action Item Status New Action Item
Chad Nelson SDD-3 Assignment Complete
Cole Anagnost SDD-3 Assignment Complete
Tas Fox SDD-3 Assignment Complete
Tim Flanigan SDD-3 Assignment Complete

Software Design Description

Zombie Apocalypse

Chad Nelson
Cole Anagnost
Tasewell Fox
Tim Flanigan

TABLE OF CONTENTS

Table of Contents.. 4
Revision History.. 5
1. Introduction.. 6

1.1 Purpose ... 6
1.2 Scope.. 6
1.3 Definitions, Acronyms, Abbreviations ... 6
1.4 Design Goals .. 7

2. References .. 8
3. Decomposition description.. 9

3.1 Module Decomposition ... 9
3.2 Concurrent Process ..22
3.3 Data Decomposition ...22
3.4 States ..25

5. Interface Description .. 29
5.1 Module Interface..29
5.2 Process Interface ...43

REVISION HISTORY

Version Date Author Change

0.1 10/29/2009 Group 10 Initial Document

0.2 11/2/2009 Group 10 SDD-1 Sections Completed

0.3 11/6/2009 Group 10 SDD-2 Sections Completed

1. INTRODUCTION

1.1 PURPOSE

The purpose of this software design description is to describe the architecture and design of
Zombie Apocalypse. The intended audience for this document is its developers, Professor
Simanta Mitra, TAs, and the students of ComS 309 Fall 2009.

1.2 SCOPE

The scope of this document is limited to the low level architectural and design
considerations for Zombie Apocalypse. This document should provide its reader with a
detailed understanding of the game, expected user interaction, and how the system works.

1.3 DEFINITIONS, ACRONYMS, ABBREVIATIONS

Term Description

Alpha Transparency

AS3 (ActionScript 3)The programming language used with Adobe Flash

Chat Room A collection of client connections to the server that are grouped together for
the purpose of sharing text messages; the lobby and all game rooms are
chat rooms

Client An instance of the game run via a Flash virtual machine; there are many
clients

DisplayObject An interface that any visible item implements

Display Tree A tree containing a root node and it's children; any visible object must be
attached to the display tree before it is visible on the stage

Game Room A chat room where all players have the intent of playing a multiplayer game
together; limited number of players; there can be any number of game
rooms

Lobby The default chat room where players are allowed to create/join game
rooms; unlimited number of players

MovieClip An AS3 object that implements the DisplayObject interface; contains a
number of frames that are animated

Player (Actor) A person that plays the game by running an instance of the client

Server A program that manages connections and stores information. Manages
room creation and multiplayer communication, and stores data about player
accounts, high scores, and game status.

Sprite An AS3 object that implements the DisplayObject interface; contains a
single static image

Stage A static AS3 object that represents the view of all visible objects

*.SWC (Shockwave Flash Component extension) Contains code and graphics that
can be instantiated by another Flash program

*.SWF (Shockwave Flash extension) A Flash movie file; Contains compiled byte
code and graphics that will be interpreted by a Flash Player and displayed
on a webpage

1.4 DESIGN GOALS

1. Usability - The game must provide an intuitive player interface and control scheme,
in addition to help or tips for an inexperienced players. The game should also
remain responsive during intensive processing for many onscreen opponents. This
design goal is met by implementing a widely used control scheme (WASD keyboard
controls for player movement with QER for other actions, mouse for aiming and
firing) with all necessary information shown in a GUI overlay.

2. Multiplayer - The game must allow multiple players to play on the same map in real
time. This design goal will be met using a client-server architecture, where central
servers store the player's data and relay information between client machines.

2. REFERENCES

[None]

3. DECOMPOSITION DESCRIPTION

3.1 MODULE DECOMPOSITION

Zombie Apocalypse uses a client-server architecture. The client contains numerous sub-
systems that are very modular (Screens), and a few sub-systems that provide access to
data (Services). This increases component cohesion and decreases component coupling. In
general, the architecture of the game is:

More specifically, the interactions between the screens and services is more complex. Each
one of the screen classes is completely decoupled from the other screens; they are
connected together only by making a call to the system controller to switch the currently
displayed screen. Furthermore, each screen's visual information is separated from the
controlling logic. The visual information is edited in Adobe Flash and stored as an .swc file.
The controlling logic is written in the screen class. When each screen is instantiated, it

loads its appropriate .swc file. If a screen requires access to certain data, it will load the

appropriate services from the SystemController. Screens use the services to access data,
edit data, and communicate with the server. In this way, the view (.swc file) and model
(data inside UserService, LevelService, etc) are separated by the controlling classes
(screens).

A more detailed diagram of the game architecture is described here:

3.1.1 System Controller

Author: Chad Nelson

Description: This is the system that bootstraps the project. It initializes services and
screens and then displays the team logo.

Diagram:

Components:
• Preloader Class - Initialized while the user is downloading the executable. It

displays the progress of the download, and when complete, boots the
SystemController

• SystemController Class - Bootstraps the game. Initializes all services and screens
and displays the LogoScreen.

Services:
• Holds references to services and screens
• Enables switching screens of the User Interface Package
• Initializes Screens and Services

3.1.2 User Interface Package

Author: Cole Anagnost

Description: The User Interface Package is responsible for allowing the user to interact
with the client, and processes all user input. This package includes the screens that make
up the game's main menu, as well as the displays for both single and multi-player
gameplay.

Diagram:

Components:
• BuyScreen Class - Allows the player to purchase new weapons or ammunition for

weapons they already own.
• HelpScreen Class - Displays the game controls.
• LevelScreen Class - Allows the player to pick a level in the single player campaign.
• LobbyScreen Class - Displays the multi player chat lobby, and allows the player to

select a game to join.
• LoginScreen Class - Allows the player to enter their usename and password, then

verifies those with the server.
• LogoScreen Class - Displays the game logo while the client connects to the server.
• MainScreen Class - Displays the main menu screen.
• MultiScreen Class - Displays the multi player game screen (level plus user

interface overlay, plus other players). Receives user input during gameplay.

• RoomScreen Class - Displays the multi player game room. Allows the player to
chat with other players in the game room, and allows the host to change game
settings.

• ScoreScreen Class - Displays the top scores for each level, retrieved from the
server.

• SingleScreen Class - Displays the single player game screen (level plus user
interface overlay). Receives user input during gameplay.

Services:
• Provides a menu interface for the user upon login (via MainScreen)
• Provides an interface for purchasing new weapons or ammunition (via BuyScreen)
• Displays game controls (via HelpScreen)
• Provides an interface for selecting a level in the single player campaign (via

LevelScreen)
• Provides an interface for chatting with other players (via LobbyScreen and

RoomScreen)
• Provides an interface for creating new game rooms (via LobbyScreen)
• Provides an interface for the user to enter their username and password (via

LoginScreen)
• Provides an interface for the game host to change game settings (via RoomScreen)
• Displays the top scores retrieved from the server (via ScoreScreen)
• Provides an in-game interface overlay for the user(displaying player vitals such as

health and ammo)
• Receives and processes user input during gameplay (via SingleScreen and

MultiScreen)

3.1.3 Sound Service Package

Author: Tasewell Fox

Description: The Sound Package controls and regulates all sound occurring in the game. It
is responsible for playing sound effects, music and keeping the sound data organized. The
sound package consists of two major classes, the SoundService and MusicService, which
provide the sound capabilities. The SoundService class plays all of the sound effects of the
game both local and remotely, and the MusicService class plays sound locally.

Diagram:

Components:
• MusicService Class - The MusicService class is responsible for controlling the play

back of music.
• SoundService Class - The SoundService class is responsible for playing all of the

sound effects from the game.
• WeaponSound Interface - The WeaponSound interface provides a standard

interface for all of the sound effects of the game.
• UserChannel Class - The UserChannel class creates and stores sound channels for

each player to use so multiple sounds can be played concurrently.
• Sound Class - This is the Flex 3 standard library sound class.
• SoundChannel Class - This is the Flex 3 standard library soundChannel class.

Services:
• Provides music for the client side
• Provides the client with functions to select, start, and stop music
• Provides weapon firing sound effects
• Provides weapon reloading sound effects
• Provides weapon deployment sound effects
• Provides weapon switching sound effects

• Provides the ability to play sound effects on specific channels depending on which
user has initialized the sound event

3.1.4 Client Service Package

Author: Tasewell Fox

Description: The Client Package provides the local client with mechanisms to store,
aggregate and manipulate data. This package is responsible for creating a socket connection
with the server, decoding server commands, sending data to the server, data logging, and
debugging.

Diagram:

Components:
• ClientService Class - Responsible for creating a socket connection with the game

server, sending messages to the server, and handling incoming server messages.
• UserService Class - Holds user data and communicates updates to the user data

to ClientService

Services:
• Creates connection to the server
• Provides user authentication to server
• Receives and stores user data from server
• Sends updates of user data to server

3.1.5 Level Service Package

Author: Tim Flanigan

Description: This package provides a single service and a set of objects that are used
during gameplay. Only the SingleScreen class and the MultiScreen class use the
LevelService.

Diagram:

Components:
• LevelService class - This class is responsible for creating and holding all the level

data. Levelservice creates a new level that contains randomly placed zombies inside
certain boundaries that are also stored in the class.

• Pickups Class - This class is responsible for any pickups that get dropped when the
user kills a zombie. Depending on what pickup is obtained, a pickup allows the user
to increase their health, money, or ammo.

• Boundary Class - This class is responsible for handling player and zombie
movements that take place near a boundary. It keeps users and zombies from
moving into boundary that is not allowed.

• Zombie class - This class stores all information about zombies including health,
speed, movement data. This class is responsible for the various ways that a zombie
can move towards a player.

Services:
• Creates a new level
• Spawns zombies randomly inside valid points on the level.
• Sets difficulty of zombies spawned
• Contains data on the invalid areas a user or zombie can move to inside the level.
• Zombie class controls zombie movement throughout the level.
• Displays pickups on the level after a zombie is killed if one drops.

3.1.6 Server Package

Author: Chad Nelson

Description: The server package allows persistent user data and multiplayer
communication. Part of Adobe's cross-domain security policy requires us to host a Policy
Server that allows clients access to the Data Server port.

Diagram:

Components:
• PolicyServer Class - A socket server to handle incoming socket connections
• PolicyServerThread Class - A thread to handle policy requests from a client.
• DataServer Class - A socket server to handle incoming socket connections
• DataServerThread Class - A thread to handle incoming messages from a client.
• Database Class - This class establishes a connection to the database server and

creates a table that contains the information of each users accomplishments. It also
contains methods to query the server.

• Room Class - A collection of users

Services:
• Grant the client access to the DataServer port
• Allow the client to login / create a new user
• Sends the client its user data upon login
• Allow a logged in client to send chat messages and multiplayer commands to other

sockets in the same room

• Allow a logged in client to retrieve an ordered list of high scores
• Allow a logged in client to create new rooms / join existing rooms
• Allow a logged in client to update their stats in the database

3.2 CONCURRENT PROCESS

3.2.1 Server Process

Name: DataServer

Description: The server side process for the game. Provides communication between
game clients and the database.

Created: N/A

Terminated: N/A

Threads:
• DataServerThread - Handles all incoming messages from a particular client (one

thread for each connected client)

3.2.2 Client Process

Name: Preloader / SystemController

Description: The client process contains the primary thread for the client application.

Created: This process is created when the client starts.

Terminated: This process is terminated when the client is terminated.

Threads:
• None (the only threading is hidden from us in ClientService)

3.3 DATA DECOMPOSITION

3.3.1 Server Database

Column Name Type Description

username TEXT(50) Player's username

password TEXT(50) Player's password

score INT Player's score (used to rank)

level INT Player's highest unlocked level

wins INT Number of levels completed

losses INT Number of failed attempts

cash INT Player's current cash

kill_count INT Player's total kills

accuracy INT Player's overall accuracy rating

weapons TEXT(500) Player's current weapon and ammo list

3.3.2 LevelService

Description: Represents the current level.

Fields:

public var widget : MovieClip
Background image of the current level

public var levelIndex : int
Current level

public var users : Array = new Array()
Array of UserService objects (each player in the game)

public var boundaries : Array
Array of Boundary objects

public var zombies : Array = new Array()
Array of Zombie objects

public var pickups : Array
Array of Pickup objects that zombies drop

public var difficulty : int
Difficulty of zombies (0 - 5)

public var width : Number
Width of the level widget

public var height : Number
Height of the level widget

public var numZombies : int
Number of zombies in level (used for stat tracking)

public var bloodsplatters : MovieClip
Array for holding blood splatters

3.3.3 Weapon Class

The weapon class contains information pertaining to all weapons in the game. It contains
all the statistics for the weapon.

Fields:

public var name : String;
Name of the weapon

public var graphic : DisplayObject;
Graphic object that displays the weapon

public var frames_per_bullet : int;
Number of non-shooting frames that pass before next shot

public var frames_per_reload : Number;
Number of frames before gun is reloaded

public var penetration : int;
Number of zombies the round will penetrate through

public var spread : int;
The angle in degrees that the gun might fire off center

public var range : int;
How far the bullet will travel

public var ammoLoaded : int;
Ammo currently in the gun

public var ammoLeft : int;
Total ammo remaining

public var damage : int;
Damage the gun will do

public var clipSize : int;
The number of bullets in a clip

public var sound : int;
Range that sound attracts attention

public var knockback : int;
How far the gun knocks back its target

public var velocity : Number;
Velocity of the round.

public var shots : int;
The number of shots discharged each time the weapon is fired.

public var cost : int;
Cost of the weapon in the store

public var primary : Boolean;
True for primary, false for secondary

public var type : int;
Index value from WeaponIndex

3.4 STATES

3.4.1 Game State

States:

LogoScreen: Switches to LoginScreen after showing the title screen
LoginScreen: Switches to MainScreen after user enters their username/password
MainScreen: Switches to ScoresScreen, HelpScreen, LevelScreen or LobbyScreen
depending on user selection
ScoresScreen: Returns to MainScreen on user selection
HelpScreen: Returns to MainScreen on user selection
LevelScreen: Switches to MainScreen or SingleScreen depending on user selection
LobbyScreen: Switches to MainScreen or RoomScreen depending on user
selection
SingleScreen: Switches to BuyScreen at the end of a level
RoomScreen: Switches to LobbyScreen or MultiScreen depending on user
selection
BuyScreen: Returns to SingleScreen or switches to LevelScreen depending on
user selection

MultiScreen: Returns to RoomScreen at the end of a level

3.4.2 Zombie State

States:

1. Zombie Initialization: In this state the zombies are initialized
2. Random Walk: The zombie randomly selects a target and walks to it
3. Is a player detected?: Checks if the zombie has detected a player
4. Zombie chase player: Zombie goes after the player
5. Zombie in attack distance?: Checks if the zombie is in attack range
6. Zombie attack: Zombie attacks the player

4. DEPENDENCY DESCRIPTION

4.1 INTERMODULE DEPENDENCIES

4.2 INTERPROCESS DEPENDENCIES

NONE

4.3 DATA DEPENDENCIES

See Intermodule dependencies

5. INTERFACE DESCRIPTION

5.1 MODULE INTERFACE

5.1.1 SystemController

Description: The SystemController is a singleton class that holds references to services
and screens, and provides public methods to change the currently displayed screen, and to
get the singleton instance of the SystemController.

Public Functions

getInstance():SystemController

changeScreen(previous : DisplayObject, index:int):void

fadeChangeScreen(previous : DisplayObject, index : int):void

animateChangeScreen(previous : DisplayObject, index : int, reverse : Boolean =
false):void

The index value passed to changeScreen functions is specified by the enumerator
ScreenIndex. For example, if the LogoScreen is done displaying the logo and wants the
Login screen to load, it will call:

SystemController.getInstance().animateChangeScreen(this, ScreenIndex.LOGIN);

Public Variables Description

clientService : ClientService Reference to the ClientService

levelService : LevelService Reference to the LevelService

musicService : MusicService Reference to the MusicService

soundService : SoundService Reference to the SoundService

userService : UserService Reference to the UserService

screens : Array Untyped array of all screens from the User Interface
Package

singlePlayerMode : Boolean A read-only boolean indicating game mode

5.1.2 ClientService

Description: The main communications interface is the boundary between client and
server. Although the level of detail covered below is more fit for a design document, we list
it here for transparency.

Our server will always be running and listening for incoming socket connections on the
following DNS and port:

Host = chad.game-host.org
Port = 25432

Once a socket connection has been opened, UTF string messages will be sent between the
client and server based on the criteria outlined in this section.

Messages are formatted by having an operation string followed by a colon, with any
parameters following the opcode. Multiple parameters will be delimited by a single "|"
character.

The format to describe our communications interface in the below scenarios is
>> Opcode: - text description of the opcode (param1, param2, ...)
where ">>" indicates a message the client sends to the server and "<<" indicates a
message a message sent from the server to the client. "><" indicates a message that is
sent both ways.

Public Functions

socketSend(message:String):void

Opcode
(Sending)

Arguments Description

LOGIN username|password Logs in the user or returns an error

CREATEUSER username|password Creates a new user or returns an error

CHECKUSER username Returns USERAVAILABLE if this username is not
used; nothing otherwise

JOINROOM roomname Makes the user join the room, leaving his old room

CHAT message Sends a chat to the room the user is in

GETHIGHSCORES Retreive high scores from the server

UPDATEUSERVAR variable|value Updates a column in the database for this user

S* Multiplayer setup
commands

A special chat-like command used for setting up
multiplayer

M* Multiplayer
commands

A special chat-like command used in multiplayer

Opcode (Receiving) Arguments Description

LOGIN username=bobdylan|score=... User data sent after log in / user
creation

LOGINFAILED errormsg Error message if login failed

CREATEUSERFAILED errormsg Error message if user creation failed

USERAVAILABLE username Username is available for user
creation

HIGHSCORES 1,chad,100,...|r2c1,r2c2,r2c3... High scores list

LOBBYUSERLIST user1|user2|user3... List of users in the lobby

LOBBYROOMLIST room1|room2|room3... List of available rooms

LOBBYUSERJOIN username Presence notification: user joined
lobby

LOBBYUSERLEFT username Presence notification: user left lobby

CREATEROOM roomname Room presence notification

DELETEROOM roomname Room presence notification

LOBBYCHAT message Chat message from a user in the
lobby

USERLIST user1|user2|user3... List of users in the game room

USERJOIN username Presence notification: user joined
room

USERLEFT username Presence notification: user left game
room

CHAT message Chat message from a user in a game
room

S* args Multiplayer Setup Command

M* args Multiplayer Command

The class also has one public variable:

Public Variables Description

connected:Boolean = false; A read-only boolean indicating connection status

5.1.3 LevelService

Description: The LevelService is responsible for maintaining the graphical representation of
the currently played level.

Public Functions Description

setLevel(index : int):void Erases the current level and constructs the start of level index

Public Variables Description

widget:MovieClip Map image

levelIndex:int Is this level 1, level 2, etc?

boundaries:Array Array of Boundary objects that no one can enter

zombies:Array Array of Zombie objects

pickups:Array Array of Pickup objects that zombies drop

bloodsplatters:MovieClip Movieclip to contain bloodsplatters

difficulty:int Difficulty of zombies

width:int initial width of the widget

height:int initial height of the widget

numZombies:int Number of zombies on map at the start of the level

5.1.4 MusicService

Description: The music service contains two public functions. It pulls its music from the
internet by containing URLs to .mp3 files.

Public Functions Description

play(levelIndex : int):void Starts playing the music for the level specified

fadeOut():void Fades out the music

5.1.5 SoundService

Description: The sound service is responsible for playing all of the sound effects from the
game. This class has three public functions which control how the sounds are played and on
what channel. When a user joins the game they are assigned a sound channel using the
addUser function. When a player takes an action that would play a sound a call to the sound
service is issued using the localCall function. An opcode string is passed to the sound
service decoded and played on the appropriate channel, and then forwarded to the server
so other players can also hear the sound.

Public Functions Description

localCall(args:String):void Makes a local sound call and pushes a sound event to the
server

ServerCall(args:String):void
A sound call from the server, plays the sound on the
appropriate sound channel.

addUser(name:String,
weapon:int):void

This function adds a user channel object to the soundService
initialized with the username and the index of the users
current weapon

5.1.6 UserService

Description: The user service is a data storage class that stores all of the information of
the current player and pushes it to the server when the player is done.

Public Functions Description

setup(args:String):void This function takes a string containing all of the stored users
data and initializes the user service with the data.

syncAll():void Pushes all of the modified user data back to the server for
storage.

tallyShot(w:Weapon):void Keeps a running count of the number of times a weapon is
fired, used for stat tracking

tallyBullet(b:Bullet):void Keeps a running count of bullets that hit their target.

Public Variables Description

name:String The players name

money:int The amount of money the player has

level:int The level the player is on

kill_count:int Running count of the number of kills

hit_count:int number of bullets that hit

shot_count:int number of bullets shot

win_count:int number of wins

loss_count:int number of losses

score:int the players current score

health:int the players current healt

weaponPrimary:Weapon The current primary weapon

weaponSecondary:Weapon The current secondary weapon

powerup:Powerup The current powerup

weapons:Array All weapons owned by the player

powerups:Array All powerups owned by the player

items:Array All items owned by the player

widget:w_player The players graphical widget

velocity:Point The players current velocity

speed:int The players current speed

5.1.7 BuyScreen

Description: The buyscreen is displayed after every level in the game. It allows the user
to choose weapons and equipment to use in the game. Any weapons or equipment the
player buys through this screen is stored in an array in the UserSerivce.

Public Functions Description

setMessage(I_STATUS: int):void Sets the continue button message

Public Constants Description

I_FAILED : int Int used to change the continue button message

I_SUCCESS : int Int used to change the continue button message

I_LEVEL : int Int used to know which level the continue button goes too

5.1.8 LobbyScreen

Description: The lobby screen is displayed when the user selects "multiplayer" from the
main menu. It allows the user to chat with other users and join or create multiplayer
games.

Public Functions Description

setUserList(users : String):void Receives the lobby user list from the server

setRoomList(rooms : String):void Receives the lobby room list from the server

userJoin(username : String):void A user has joined the lobby (add them to the
user list

userLeft(username : String):void A user has left the lobby (remove them from
the user list)

roomCreated(roomname : String):void A room has been created (add it to the room
list)

roomDeleted(roomname : String):void A room has been deleted (remove it from
the room list)

receiveChat(msg : String):void Receives a chat message from the server

gotoGameRoom():void Takes user to the game room screen

5.1.9 LoginScreen

Description: The login screen takes a username and password that the user inputs and
sends it to the server to check if it's valid. If the information is valid, the user logs into
there account, otherwise an error message is displayed.

Public Functions Description

loginFailed(msg:String):void Displays a message saying login failed if something
goes wrong

createUserFailed(msg:String):void Displays a message saying unable to create user if
the account could not be created

userAvailable(username:String):void Changes the available variable if the username was
available

5.1.10 MultiScreen

Description: The MultiScreen extends SingleScreen, overwritting only a few of it's
methods.

Public Functions Description

receiveChat(msg : String):void Receive a chat message during gameplay

5.1.11 RoomScreen

Description: The room screen is displayed when the user joins a multiplayer game from
the lobby screen. It allows the user to chat with other users in the game room, and allows
the host to change game settings.

Public Functions Description

setUserList(users : String):void Receives game room user list from the server

userJoin(username : String):void A user has joined the game room (add them to
the user list)

userLeft(username : String):void A user has left the game room (remove them
from the user list)

receiveChat(msg : String):void Receives a chat message from the server

receiveSetProperty(cmd : String, value :
String):void

Receives a change in game settings made by the
host

5.1.12 ScoreScreen

Description: This class represents the High score screen in the game. It reads data from
the database and displays the users ranked by score on the screen.

Public Functions tDescriptionion

loadScores(highscores:String):void Reads user data from the database and displays it on
screen in ranked order

5.1.13 ScreenIndex

Description: An enumerator for the different screens in the game

Public Constants

BUY:int = 0

HELP:int = 1

LEVEL:int = 2

LOBBY:int = 3

LOGIN:int = 4

LOGO:int = 5

MAIN:int = 6

MULTI:int = 7

ROOM:int = 8

SCORE:int = 9

SINGLE:int = 10

5.1.14 Bullet

Description: This class represents a bullet depending on what type the weapon using the
bullet shoots. It is represented graphically as well as by the data the object holds.

Public Functions

Bullets(gun : Weapon, shape : Shape,
tweenP : TweenLite, target : Point)

Creates a bullet object as the bullet is being
shot from the gun

teardown():void Removes the bullet from the screen

Public Variables Description

graphic : Shape Represents the shape of the bullet
depending on the ammo and gun type

tween : TweenLite

penetration : int Represents the number of zombies the bullet
can penetrate through when shot

endPoint : Point Represents the point where the bullet
dissapears

lifeTime : int Represents the time the bullet can be
displayed if it doesn't hit anything

weapon : Weapon Represents the weapon the bullet is being
used for

hit : boolean Used for stat tracking if a bullet hits a target

5.1.15 Boundary

Description: A Boundary is an object that contains two points and a type. It represents a
two-dimensional shape in a level that is a zone of no entry.

Public Functions Description

calculatePosition(initialPosition:Point,
desiredPosition:Point):Point

Determines the location of the traveling object after
calculating collisions with this boundary

checkCollision(initialPosition:Point,
desiredPosition:Point):Boolean

Does a quick check to see if the traveling object
intersects this boundary

5.1.16 BoundaryIndex

Description: An enumerator for boundary type objects.

Public Constants

FENCE : int = 0

RECTANGLE : int = 1

CIRCLE : int = 2

5.1.17 Pickup

Description: This class is responsible for any pickups that get dropped when the user kills
a zombie. Depending on what pickup is obtained, a pickup allows the user to increase their
health, money or ammo.

Public Functions Description

Pickup(index : int, value : int) Displays a pickup item on the screen when
needed

Public Variables Description

widget : DisplayObject The pickup graphic

health : int The amount of health the pickup will give the
user when picked up

cash : int The amount of cash the pickup will give the
user when picked up

ammo_type : int The type of ammo the pickup represents

ammo : int The amount of ammo the pickup will give
the user when picked up

lifetime : int The time the pickup will stay on the screen
before it dissapears

5.1.18 PickupIndex

Description: An enumerator for available pickup items

Public Constants

CASH : int = 0

HEALTH : int = 1

PRIMARYAMMO : int = 2

SECONDARYAMMO : int = 3

5.1.19 Powerup

Description: This class is responsible for any powerups dropped when the user kills a
zombie. A powerup gives the user a temporary bonus when collected.

Public Functions Description

Powerup(index : int) Displays a powerup item on the screen when
needed

Public Variables Description

widget : DisplayObject The powerup graphic

index : int The type of powerup (based on the
PowerupIndex enumerator)

charges : int The number of times the powerup can be
used before it runs out

5.1.20 PowerupIndex

Descrption: An enumerator for available powerup items

Public Constants

BODYARMOR : int = 0

MEDKIT : int = 1

MAXAMMO : int = 2

BOMB : int = 3

5.1.21 Weapon

Description: This class is responsible for storing data for weapons in the game.

Public Functions Description

fire() : void Plays the sound for a weapon firing

reload() : void Starts a weapon reload (plays sound and
delays call to reloadWeapon)

empty() : void Plays the sound for an empty weapon firing

toString() : String Displays weapon info in a human readable
format

toServerString() : String Creates a string to send to the server with
weapon data

Public Variables Description

name : String Name of the weapon

graphic : DisplayObject The weapon graphic

frames_per_reload : Number The number of frames it takes to reload the
weapon

penetration : int The number of enemies the bullet will
penetrate

spread : int The maximum angle in degrees that the gun
may fire off center

range : int The distance the bullet will travel

ammoLoaded : int The amount of ammo currently in the
weapon

ammoLeft : int The total ammo the player has remaining for
this weapon

damage : int The damage done per round

clipSize : int The number of rounds in one clip

sound : int The range at which firing this weapon will
attract zombie attention

knockback : int The distance the weapon will knock back a
target

velocity : Number The speed of the bullet

shots : int The number of shots discharged each time
the weapon is fired

cost : int The price of the weapon in the store

primary : Boolean True for primary, false for secondary

type : int The weapon's WeaponIndex

reloading : Boolean = false Whether or not the weapon is currently
reloading

5.1.22 WeaponIndex

Description: An enumerator for the weapons in the game

Public Constants

PISTOL : int = 0

MAGNUM : int = 1

MAC10 : int = 2

MP5 : int = 3

SHOTGUN : int = 4

AUTOSHOTGUN : int = 5

M4A1 : int = 6

AK47 : int = 7

SNIPERRIFLE : int = 8

MAGNUMSNIPER : int = 9

MACHINEGUN : int = 10

number_of_weapons : int = 11

5.1.23 Zombie

Description: This class is responsible for storing the data and controlling the behavior of
the zombies. This class contains methods to update the zombies AI routines and their
movements.

Public Functions Description

refresh(player:UserService):void
This function refreshes the zombies AI against
a player. If the zombie is not delayed and
within range it will attack the player.

move(pos:Point):void
Moves the zombie one unit towards the point
passed to it. This function also rotates the
zombie so they are facing that point.

moveAngle(pos:Point, angle:Number):void
Moves the zombie one unit towards the point
passed to it. This function rotates the zombie
by the angle passed to it.

shot(player:UserService,gun:Weapon):void
This function is called when the zombie is shot
to calculate damage and apply the knockback
vector.

dropPickup():void
This function is responsible for randomly
determining if a pickup item is dropped when
the zombie dies.

Public Variables Description

graphic : w_zombie The zombies graphic

health : int The zombies current health

velocity : int The zombies velocity

runVel : int The zombies velocity when running

hitVel : int The zombies velocity when shot

detected : Boolean has the zombie detected a player?

hit : Boolean has the zombie been shot?

distance : Number The distance between the player and the zombie

traveled : int The distance the zombie has traveled for pathing purposes

target : Point The zombies target for pathing purposes

type : int The type of zombie, runner = 1, zig-zag = 2

PauseTime : int Pausing variable for the random walk pathing

delayTime : int Zombies delay time after hitting the player

damage : int The amount of damage the zombie does

5.1.24 ZombieIndex

Description: An enumerator for the zombie types in the game

Public Constants

SLOW : int = 0

FAST : int = 1

ZIGZAG : int = 2

5.1.25 PolicyServerThread

Description: The PolicyServer is responsible for conforming to Adobe's Cross-Domain
Security policy. If we want an instant socket connection, then we are to implement a policy
server on port 843 that listens for policy file requests, and returns the policy file. Thus, our
socket server accepts incoming connections, listens for a specific xml string, and returns an
xml policy file that allows cross domain access to our dataserver on port 25432

Policy File Request:
<policy-file-request/>

Policy File Response:
<?xml version=\"1.0\"?>

<!DOCTYPE cross-domain-policy SYSTEM \"http://www.adobe.com/xml/dtds/cross-domain-policy.dtd\">

<cross-domain-policy>

<allow-access-from domain=\"*\" to-ports=\"25432\" />

</cross-domain-policy>

5.1.27 DataServer

Description: The DataServer is responsible for spawning DataServerThreads when new
incoming sockets connect. It is also a place that holds shared data, such as usernames and
rooms.

Public Functions Description

public void sendToRoom(String message, String
socket)

Sends message to users in the
room

public void sendToSocket(String message, Socket
socket)

Sends a message to a user

Public Variables Description

Hashtable<Socket, String> usernames List of logged inusernames and their sockets

Hashtable<Socket, Room> rooms List of sockets and their associated Room object

Hashtable<String, Room> roomnames List of roomnames and their associated Room object

5.1.27 DataServerThread

Description: The DataServerThread is created upon the dataserver accepting an incoming
socket connection. The DataServerThread is responsible for handling all messages sent it
from the ClientService. The messages it handles and sents are repeated here:

Opcode
(Receiving)

Arguments Description

LOGIN username|password Logs in the user or returns an error

CREATEUSER username|password Creates a new user or returns an error

CHECKUSER username Returns true if this username is not used

JOINROOM roomname Makes the user join the room, leaving his old
room

CHAT message Sends a chat to the room the user is in

GETHIGHSCORES Retreive high scores from the server

UPDATEUSERVAR variable|value Updates a column in the database for this user

S* Multiplayer setup
commands

A special chat-like command used for setting up
multiplayer

M* Multiplayer commands A special chat-like command used in multiplayer

Opcode (Sending) Arguments Description

LOGIN username=bobdylan|score=... User data sent after log in / user
creation

LOGINFAILED errormsg Error message if login failed

CREATEUSERFAILED errormsg Error message if user creation failed

USERAVAILABLE username Username is available for user
creation

HIGHSCORES 1,chad,100,...|r2c1,r2c2,r2c3... High scores list

LOBBYUSERLIST user1|user2|user3... List of users in the lobby

LOBBYROOMLIST room1|room2|room3... List of available rooms

LOBBYUSERJOIN username Presence notification: user joined
lobby

LOBBYUSERLEFT username Presence notification: user left lobby

CREATEROOM roomname Room presence notification

DELETEROOM roomname Room presence notification

LOBBYCHAT message Chat message from a user in the
lobby

USERLIST user1|user2|user3... List of users in the game room

USERJOIN username Presence notification: user joined
room

USERLEFT username Presence notification: user left game
room

CHAT message Chat message from a user in a game
room

S* args Multiplayer Setup Command

M* args Multiplayer Command

5.1.28 Database

The server has one SQLite database with one table named "users." The table has the
following columns and types:

Column
Name Type Default Value Example value Meaning

username TEXT(50) None bobdylan Player's username

password TEXT(50) None shotoflove Player's password

score INT 0 382 Player's score (used to rank)

level INT 1 3 Level 3 is the highest
unlocked level

wins INT 0 43 Number of levels completed

losses INT 0 12 Number of failed attempts

cash INT 1000 3420 $3420

kill_count INT 0 232 Player has killed 632 zombies

accuracy INT 1000 934 93.4%

weapons TEXT(500) <0,12,96,0,0> <0,12,96,934,1000><...> <pistol,clip,ammo,hits,shots>

powerups TEXT(50) TBA TBA

*Note that "username" is a primary key

5.1.29 Room

Description: The Room class is responsible for storing and manipulating the different
multiplayer rooms that are created during the use of the program. It contains functions to
add and delete users. Each user in the room is identified by their socket.

Public Functions

void
addUser(Socket
socket)

This function adds a user to the room and notifies other members of the
room to the arrival of the new user

void
delUser(Socket
socket)

This function removes a user from the room and notifies the other other
members of the room of the departure of the user.

Public Variables Description

String name The name of the room

ArrayList<Socket> users A list of the users sockets

long max The maxmimum number of people that can be in the room

5.2 PROCESS INTERFACE

5.2.1 PolicyServer

Starting Process: The process is started via the command line. Only one PolicyServer
process needs to exist.
Ending Process: This process is a long running process and should not end.

5.2.1.1 PolicyServerThread

Thread Start: A new thread is created for every new socket connection that is created.
PolicyServer could hold on to any number of these worker threads.
Thread End: The thread terminates when the socket connection is terminated (the client on
the other side is close or the connection is lost).

5.2.2 DataServer

Starting Process: The process is started via the command line. Only one DataServer
process needs to exist.
Ending Process: This process is a long running process and should not end.

5.2.2.1 DataServerThread

Thread Start: A new thread is created for every new socket connection that is created.
DataServer could hold on to any number of these worker threads.
Thread End: The thread terminates when the socket connection is terminated (the client on
the other side is close or the connection is lost).

5.2.3 Client Program

Starting Process: The process can be started in multiple ways. One way is to run the .swf
file using Adobe's Flash Player. Another way is to embed the .swf into a webpage and visit
the page. Multiple clients can be spawned by the user.
Ending Process: This process ends when the user closes Adoble's Flash Player or leaves
the webpage where the embedded .swf existed

*Note: This process contains no threads.

6. DETAILED DESIGN

NOT REQUIRED

7. DESIGN RATIONALE

7.1 DESIGN ISSUES

7.1.1 P2P vs. Client-Server

One of the major design decisions we had to make was whether to use a peer-to-peer (P2P)
or client-server system for the network features of our program. We decided to use a client-
server system. This decision was based on several factors, the most influencing being that

the P2P features of actionscript are still in the beta stages and could not be guaranteed to
be working 100%. If we could have had a more dependable P2P solution then we most
likely would have implemented a UDP P2P connection instead of a TCP socket client-server
model. The client server model also provides us with an easy way to integrate the sqlite
database into the backend of the server so they could be tightly integrated.

7.1.2 Separate Multiplayer vs Extended Multiplayer

A very critical design decision we made late in the development of the program was
deciding whether or not to develop an entirely separate multiplayer for our game or retool
the single player class so that the multiplayer could extend it. The decision was made to
retool the single player class mainly for the benefits of code re-use and simplicity. The
ability to simply extend the single player gameplay elements allowed for a vast amount of
code reuse within the program. The server opcodes could all remain the same between the
single and multiplayer and only a few select function had to be overwritten and added to
provide the functionality that was missing from the single player feature set. Extending the
single player class was also a much more simple undertaking than attempting to derive a
completely new class, and there's really no point in re-inventing the wheel.

	Table of Contents
	Revision History
	1. Introduction
	1.1 Purpose
	1.2 Scope
	1.3 Definitions, Acronyms, Abbreviations
	1.4 Design Goals

	2. References
	3. Decomposition description
	3.1 Module Decomposition
	3.1.1 System Controller
	3.1.2 User Interface Package
	3.1.3 Sound Service Package
	3.1.4 Client Service Package
	3.1.5 Level Service Package
	3.1.6 Server Package

	3.2 Concurrent Process
	3.2.1 Server Process
	3.2.2 Client Process

	3.3 Data Decomposition
	3.3.1 Server Database
	3.3.2 LevelService
	3.3.3 Weapon Class

	3.4 States
	3.4.1 Game State
	3.4.2 Zombie State
	States:

	4. Dependency Description
	4.1 Intermodule Dependencies
	4.2 Interprocess Dependencies
	4.3 Data Dependencies

	5. Interface Description
	5.1 Module Interface
	5.1.1 SystemController
	5.1.2 ClientService
	5.1.3 LevelService
	5.1.4 MusicService
	5.1.5 SoundService
	5.1.6 UserService
	
	5.1.7 BuyScreen
	5.1.8 LobbyScreen
	5.1.9 LoginScreen
	5.1.10 MultiScreen
	5.1.11 RoomScreen
	5.1.12 ScoreScreen
	5.1.13 ScreenIndex
	5.1.14 Bullet
	5.1.15 Boundary
	5.1.16 BoundaryIndex
	5.1.17 Pickup
	5.1.18 PickupIndex
	5.1.19 Powerup
	5.1.20 PowerupIndex
	5.1.21 Weapon
	5.1.22 WeaponIndex
	5.1.23 Zombie
	
	5.1.24 ZombieIndex
	5.1.25 PolicyServerThread
	5.1.27 DataServer
	Public Variables Description Hashtable<Socket, String> usernames List of logged inusernames and their sockets Hashtable<Socket, Room> rooms List of sockets and their associated Room object Hashtable<String, Room> roomnames List of roomnames and their associated Room object
	5.1.27 DataServerThread
	5.1.28 Database
	5.1.29 Room
	

	5.2 Process Interface
	5.2.1 PolicyServer
	5.2.1.1 PolicyServerThread

	5.2.2 DataServer
	5.2.2.1 DataServerThread

	5.2.3 Client Program

	6. Detailed Design
	7. Design Rationale
	7.1 Design Issues
	7.1.1 P2P vs. Client-Server
	7.1.2 Separate Multiplayer vs Extended Multiplayer

