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ABSTRACT

The alignment of many short sequences of DNA, called reads, to a long reference genome

is a common task in molecular biology. When the problem is expanded to handle typical

workloads of billions of reads, execution time becomes critical. While existing solutions attempt

to align a high percentage of the reads using a small memory footprint, RAMPS (Reconfigurable

Architecture for Minimal Perfect Sequencing) focuses on perform fast exact matching. Using the

human genome as a reference, RAMPS aligns short reads on the order of hundreds of thousands

of times faster than current software implementations such as SOAP2 or Bowtie, and about

1000 times faster than GPU implementations such as SOAP3. Whereas other aligners require

hours to preprocess reference genomes, RAMPS can preprocess the human genome in a few

minutes, opening doors via the ability to use arbitrary reference sources for alignment and

increasing the amount of data that aligns with the reference.
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CHAPTER 1. OVERVIEW

We are in a golden era of DNA research. After the first human genome was sequenced in

2003 [23], the next generation of sequencing technologies were developed with higher throughput

and lower costs. The machines operate by breaking a person’s genome into smaller fragments,

or “reads”. Since humans share 99.9% of their DNA, a reference genome is used to help align

the reads in the correct order. Many reads, copies of the same genome, are aligned to improve

the quality of the process. These techniques have produced a massive amount of data needing

alignment.

For example, a single Illumina HiSeq machine sequences 120 billion base pairs in a 27 hours

run [17]., and the Beijing Genomics Institute has at least 167 sequencing machines [31] and

projects with names like the “Million Human Genomes Project” [6]. World sequencing capacity

was estimated at 13 quadrillion base pairs per day at the end of 2011 [31], around 30,000 human

genomes, and there is no sign of slowing. In fact, the growth in the amount of sequencing data

is currently growing at a rate faster than Moore’s law and is projected to continue for some

time [8]. Moore’s law states that the number of transistors will double approximately every two

years [18]. Thus, new innovations in algorithms and designs that utilize the transistors more

efficiently are needed if the aligning of the data is to keep pace with the sequencing machines.

Numerous software projects have been developed to align the short reads from the sequenc-

ing machines with a reference genome, some of which are discussed in Chapter 2. A com-

paratively fast aligner called SOAP3 was release in 2012 from the University of Hong Kong.

To handle last year’s world capacity, it would take at least 300,000 GPUs running SOAP3

constantly, let alone process the back log. Because of the large amount of sequencing data, it

also becomes important for the processing of the data to occur on site. Networks have already

become a bottleneck to offsite computer clusters, resulting in some scientists sending their data
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on hard drives via FedEx to be processed [31].

RAMPS (Reconfigurable Architecture for Minimal Perfect Sequencing) offers a new ap-

proach utilizing the Convey HC-2, a hybrid core computing system. Using the human genome

as a reference, RAMPS aligns short reads on the order of hundreds of thousands of times faster

than software such as SOAP2 or Bowtie, and about 1000 times faster than GPU implementa-

tions such as SOAP3. By decreasing the preprocessing time, we hope to fundamentally change

the computational problem by allowing a higher percentage of the read data to be aligned

exactly to the reference. This is made possible by the use of a highly pipelined hardware design

and the large amounts of memory bandwidth provided by Convey’s hybrid core computing

system.

This work provides discusses related work and projects, presents relevant background mate-

rial, details the implementation of RAMPS, and reviews and discusses the results in comparison

to other recent works. Chapter 2 is a survey of current software and hardware short read align-

ers and a discussion of the algorithms currently being used in the field. Chapter 3 contains

background knowledge of the minimal perfect hashing algorithm and DNA sequencing in gen-

eral; two important topics for understanding the work. RAMPS contains two main components

implemented both in software and hardware: a series of hardware pipelines to preprocess a ref-

erence genome into a hash table, and a hardware aligner for performing fast lookups. Both of

these designs and their implementation are discussed in detail in Chapter 4.
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CHAPTER 2. REVIEW OF LITERATURE

There a plethora of short read aligners being published in research field of bioinformatics.

They vary greatly in the length of reads they sequence, data formats allowed, and algorithms

used for matching. Many aligners attempt to have high sensitivity, or the ability to find

matches given mutations in the DNA. Often, the user is allowed to decrease the sensitivity of

the program in order to improve the execution runtime. Table 2.1 lists some of the more often

sited short read aligners from the literature, including self-reported timing, memory usage, and

algorithm selection.

Table 2.1: Comparison of popular short read aligners.

Tool Platform Speed (reads/s) Algorithm(s)

BLAST [3] CPU - Database, Smith-Waterman

MAQ [26] CPU 50 Hashing

SOAP2 [27] CPU 2,000 FM Index

Bowtie [22] CPU 2,500 FM Index

BWA [24] CPU 10,000 FM Index

SOAP3-dp [21] GPU 200,000 FM Index

BWA-Convey Convey 350,000 FM Index

BWT-GPU [32] GPU 400,000 FM Index

BFAST [16] CPU Cluster 700,000 Multiple Indexes, Smith-Waterman

RAMPS CPU 800,000 MPH

RAMPS Convey 315,000,000 MPH

Early solutions for DNA sequence alignment were slow. Some used a database of common

sequences or a hash table to help align new data. BLAST [3], or Basic Local Alignment Search

Tool, was published in 1990 and was one of the first tools available for sequence alignment.

MAQ [26] was an implementation that provided quality data along with its alignment results.

Unfortunately, many of the early tools became obsolete because of their slow alignment speed

when the new generation of sequencing machines became more popular.
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A newer approach, used in SOAP2 [27], BWA [25], and Bowtie [22], is to index a refer-

ence genome using an FM Index [12] which compresses the genome using the Bowler-Wheeler

transform [9]. This scheme allows the genome to be compressed in a suffix tree, reducing the

memory footprint, and allowing use of commodity hardware. Unlike a hash table approach,

indexing in this way creates an algorithm where getting the alignment data is the result of a

pointer-based tree transversal. In cases of a mismatch, time-consuming backtracking is used

to find segments that may match with high probability. Applications like SOAP2, BWA, and

Bowtie are generally similar in their approach, but differ slightly in the way that they con-

struct their index of the reference genome and optimize the algorithm. They are all, however,

limited by memory bandwidth because of both the tree traversal and the big data nature of

the problem.

Our approach differs from prior implementations in a number of important ways. Prior

approaches seem focused on using commodity hardware, reducing memory footprints, and

providing algorithms for finding the matches for reads that contained mismatches or fuzzy data.

RAMPS takes the approach of reducing memory bandwidth to the extreme. By preprocessing

the reference genome into a hash table, alignment of arbitrary reads is a simple hash table

lookup. This has the advantage that each read aligned has a small cost in terms of memory

usage: 4 load operations to retrieve a 100 base pair read, 2 loads from the hash table, 4-5 loads

from the reference genome, and 1 store operation to a results array. For aligners based on the

FM index, the number of memory operations is usually proportional to the length of the read

for exact matches. The aligners can search multiple paths of the tree in order to allow for

mismatches and indels, but this process results in considerably more memory operations and

slower execution time.

There are additional ways to speed up BWA type aligners that would result in less of a drop

in sensitivity, such as combining nodes on different levels of the tree, or by using a hash table on

the starting segment of the tree transversal. Such an approach, using a hash table for the first

few levels of the tree, was demonstrated by Arbabi et al. [4] at the MEMOCODE 2012 design

competition and resulted in reasonable speed improvements without greatly compromising

sensitivity.
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Most implementations using alternative hardware follow the mainstream approaches and

simply tweek and port the existing algorithms to work on GPUs, CPU cluster, and FPGAs.

For example, a group from Virginia Tech ported the slower RMAP algorithm to the GPU [2].

Even though the RMAP algorithm was a good fit for the GPU architecture and they improved

the performance tenfold, the newer algorithms running on commodity were faster. Torres et al.

took the BWA source and ported it to a GPU [32]. Performing only exact matches, they were

able to gain similar performance increases as SOAP3. SOAP3 [28] uses the same approach,

but allows for higher sensitivity. Both utilize the GPUs higher memory bandwidth for greater

speed, but they fail to fundamentally change the algorithms used.

Because prior attempt only changed the hardware used, not the algorithm, the result is a

marginal increase in performance due to the use of better hardware. To achieve big performance

gains, more must be done than just tweaking the same algorithms to work on better hardware.

In fact, since the growth of DNA sequencing data is currently outpacing the growth of Moore’s

law, simply using better hardware won’t solve the problem in the near future. RAMPS breaks

the tradition of the previous short read aligners. The algorithm RAMPS uses for alignment

is very simple and scales remarkably well due to the redundant nature of performing a single

instruction on multiple pieces of data.
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CHAPTER 3. PRELIMINARIES

3.1 Background on DNA Sequencing

DNA (Deoxyribonucleic acid) is double helix composed of four nitrogen based nucleobases:

Adenine, Thymine, Guanine, and Cytosine (abbreviated ATGC). The DNA molecule actually

contains two copies of the genetic information; an important attribute that allows it to be

easily replicated by splitting the two chains of the double helix apart. The two chains run

anti-parallel to each other, with one end of a single chain labeled 3’ (three prime) and the

other labeled 5’ (five prime), depending on the direction of the 3rd and 5th carbon atom on

the sugar molecule. The bases (ATGC) of each chain pair with one another using hydrogen

bonds. Adenine always pairs with Thymine (AT); Cytosine always pairs with Guanine (CG).

While the relative proportion of the bases in DNA were known to be approximately equal in

the base pair groups, Watson and Crick were the first to proposed the double helix architecture

in which the bases actually bonded in 1953 [33]. Due to the antiparallel nature of the chains

and base pairing, given one chain of DNA you can compose the opposite chain by reversing

the order and substituting base pairs. The base pairs are chained together using a 5 carbon

sugar (ribose or 2-deoxyribose) called a nucleoside; the nucleoside and nucleobase are together

referred to as a nucleotide. In the human genome, there are over 3 billion base pairs. They are

grouped into 23 chromosomes, each containing hundreds of millions of base pairs. Full genome

sequencing is the process of trying to discover the exact sequence of base pairs for a particular

individual.

In general, sequencing DNA today involves breaking the DNA into small segments, am-

plifying, splitting the chains apart, and rebuilding one of the chains one base pair at a time.

Amplification can take a single segment and multiply it millions of times using a polymerase
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chain reaction (PCR) machine, based on a process of repeated heating, cooling, and duplication

accredited to Kary B. Mullis [29]. The amplification is necessary so that when fluorescently

marked bases are added to a sample when rebuilding one of the chains a single nucleotide at

a time, a laser can detect which base pair was added. Newer models of sequencing machines

perform “paired end” reads; i.e. both chains of the double helix are sequenced in order to

improve quality.

Next generation sequencing devices, such as the ones from Illumina [17], can produce a

massive amount of data: 300 million to 3 billion short paired reads on a typical 1 to 11 day

run of the sequencer. Typically, the base pairs in the genome are sequenced multiple times to

ensure that every portion of the genome is sequenced, since it is hard to know exactly how the

DNA is broken into small segments. The amount of duplicate data, called coverage, is typically

in the range of 2x (low coverage) to 20x (deep coverage) [11]. Thus, it is normal to have tens

of billions of base pairs worth of information to align.

To align the short sequencing data, a reference genome is used. The reference is like having

a picture of the puzzle while attempting to put the puzzle together. Aligners take each short

read from the sequencing machine and attempt to ascertain its position in the reference genome.

At best, this amounts to a simple string matching. At worst, it involves allowing for mutations

in the read data such as mutations (single nucleotides with a different base), indels (insertions

and deletions of single nucleotides), or gapped alignment (allowing for large gaps in either the

read or the reference).
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3.2 File Formats

Sequencing data typically comes in a text (ASCII encoded) data format known as FASTQ.

The FASTQ format is discussed in detail in Figure 3.1. RAMPS utilizes programs from the

MEMOCODE 2012 reference design to compress the reference genome into a binary encoded

form. A single ASCII encoded character (such as an ‘A’) typically consumes a single byte of

data (8 bits). Since there are only four bases, each base can be binary encoded into 2 bits; thus,

the sequence data can be compressed by at least a factor of 4. The data is further compressed

by removing axillary comments and quality data removed. Since we wrote our own hardware

using the Convey system, we are better able to take advantage of this compression, as the

hardware can manipulate 2 bits at a time whereas a normal compute must manipulate data by

the byte (8 bits) or word (32 bits).

The quality score is also ASCII encoded. In ASCII, each character is assigned an 8 bit

binary value. The value of ‘E’ in binary is 0b01000101, or 69 in decimal. ‘F’ is 0b01000110,

or 70 in decimal. Sequencing machines map the probability that a given base in incorrect into

a set range of numbers, and then store them in the FASTQ file appropriately. The higher the

number of a quality character means the higher the quality. Thus, ‘F’ is of higher quality than

‘E’.

@ERR050082.521 HS18_6628:6:2303:13171:165808#3/2

ATTCTCCTCCAAGGCTGCAGAGGGGGCAGGAATTGGGGGTGACAGGAGAGCTGTAAGGTCTCCAGTGGGTCATTCTG

+

:DDFGFCFHEELJMJHIFDEOHHFIKDFIK;CEILH@NIAK:LHIKMIJ9HILBJJGJII7HIHJFJJGCJFGI?CI

Figure 3.1: The FASTQ file format stores short read data and quality. Each short read occupies

four lines of text, two of which contain actual data. In this example [11], the first line starts with

an ‘@’ and allows an optional comment with details about the sequencing machine, a unique

identifier, and information about this particular run. The next line contains the sequence data

encoding of the nucleotides in the familiar ACGT abbreviation. For this machine, the reads

are 100 base pairs in length. A third line delimits the bases from the quality data with a plus

sign. Finally, the quality data is given, which basically provides the probability that a given

base pair is wrong.

There also exists a format called FASTA in addition to the FASTQ format for sequence
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data. FASTA is used for storing aligned reference data, such as the human genome. The

FASTA format similarly uses ASCII encoding for the reference sequence. In addition to the

regular nucleic acids (ACGT), there were another few extra characters in the reference we used

(human g1k v37 [1]). The most common, ‘N’, represents unknown base pairs. In the reference

human genome we used, roughly 8% of the genome was unknown. Lines beginning with a ‘¿’

character are used to mark the beginning of a sequence and can contain useful comments (such

as labeling chromosome 1 and indicating it has 249,250,621 base pairs).

>1 dna:chromosome chromosome:GRCh37:1:1:249250621:1

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

...

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNTAACCCTAACCCTAACCCTA

ACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTA

...

AACCAGGTCCAGGAAGAAGGTGCAAAGACAGCATTCCAGGTAAAAGAAACAGCTTGAACA

AAAAGTGTGTAGGGGAACCGCAAGCGGTCTTGAGTGCTGAGGGTACAATCATCCTTGGGG

AAGTACTAGAAGAAAGAATGATAAACAGAGGCCAGTTTGTTAAAAACACTCAAAATTAAA

...

Figure 3.2: The FASTA file format stores reference data, such as the human genome. The lines

are 60 characters long, with each character representing a single base pair. ‘N’ means that the

base pair is unknown [11]. The ellipses are for clarity and not actually part of the file format.
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3.3 Minimal Perfect Hash Algorithms

A hash table is a type of associative array for storing data based on the hashed value of

a key. A hash function is a series of operations performed on the key that maps that key to

a specific index in the table. Minimal perfect hashing is a way of building a hash table for a

fixed set of keys without collisions (perfect) and without wasted space (minimal). Collisions

occur when two different keys hash to the same index. More formally, a minimal perfect hash

is a hash function h from a set of keys S to a range of numbers range [n] = 0, ..., n1 where h is

1− 1 on S. For a small amount of keys, finding such a hash function is possible by randomly

searching and checking. For larger sets of keys, generalized algorithms use an intermediate

table of values to adjust the hash function subtly in order to eliminate collisions and create the

minimal perfect mapping. Figure 3.3 illustrates an example of a minimal perfect hash on set

of known keys.

Hash Table

Keys

Intermediate

Table

1 2 3 4 5 60 ... n-1

1 2 3 4 5 60 ... n-1

1* -2 1 1 1*0 0

B C D E F GA H I

B C D A F E G I H

Figure 3.3: An example of a Minimal Perfect Hash (MPH) table. Each key is initially hashed

once to retrieve a few bits of information stored in an intermediate table. The key is then either

rehashed with the new seed from the intermediate table, or the offset from the intermediate

table is added to the initial index. The MPH is created by choosing values in the intermediate

table so that a given set of keys will not collide, i.e. two keys will not be directed to the same

index.

For any given key, the probability of it hashing into any given index should be equal. Hash

functions are designed so that they provide the same index given the same key. However, many

hash functions allow the use of a seed value. Changing the seed creates an entirely new mapping
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from the key set to a set of indices. This becomes important when a collision occurs in the

minimal perfect hashing scheme, as it allows the intermediate table to choose a new seed that

will cause the colliding indices to not collide.

Linear time algorithms for the construction of general minimal perfect hashes became prac-

tical starting in the 1990’s, but their construction was complex. Botelho’s dissertation provides

a history of the algorithms [7], starting. Schmidt and Siegel were the first to propose a lin-

ear time construction algorithm, though in practice it was impractical. The current dominant

algorithm is Compress, Hash, Displace (CHD) [5], though there were other more complex algo-

rithms prior. The majority of recent papers improve the main algorithm’s storage complexity

by using various compression schemes [13, 14, 35].

The basic approach used in the hash and displace algorithm of creating a minimal perfect

hash is outlined in the Algorithm 1 below. Essentially, one chooses values for the intermediate

table starting with those locations that had the most key collisions. After assigning new seed

values to locations that had collisions, the remaining keys are displaced into open locations in

the table.

Algorithm 1 Pseudocode of MPH Creation

1: procedure createMPH(keys, table)

2: Count the number of keys that fall into each slot of the table

3: Sort the keys into buckets in falling order of the count from the previous step

4: for (each bucket in order of size (where size > 1)) do

5: repeatbucket.seed++

6: until (All keys in the buckek now fall into empty spots in the hash table)

7: Record the new seed value

8: Mark the location of the keys (using the new seed) as occupied

9: end for

10: for (each bucket in order of original location in table (where bucket size == 1)) do

11: Let i be the location of the next available index in the hash table

12: Let j be the location of the single key in the hash table

13: Record the new offset value (i− j)

14: end for

15: end procedure
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CHAPTER 4. IMPLEMENTATION

This chapter discusses the various algorithms and hardware designs used to create RAMPS.

The design is discussed in great detail. It is important to remember that RAMPS is composed

of two major components: the creation of a minimal perfect hash table and a simple aligner

that uses the hash table to perform look ups. These two components were implemented as

both a software solution and a hardware solution.

4.1 Approach

When surveying the plethora of available aligners, it becomes clear that memory bandwidth

is main constraint on speed. Thus, RAMPS is optimized for reducing memory bandwidth. The

choice of a hash table as the main data structure and of using the Convey’s Hybrid-Core

computer were based on the need for increased memory bandwidth. Hash tables minimize

overhead, requiring only a few memory operations per read to find an index in the genome.

The Convey HC-2 was chosen because of its large available memory bandwidth of 80 GB/sec.

The main issue with regular hash tables is the size of the table when scaled to bioinformatics

projects. The table size is proportional to the size of the reference genome since there would be

one entry per unique 100 base pair sequence in the reference. We used a reference genome from

the 1000 genomes project [1] which contained about 2.8 billion unique 100 base pair segments.

This means that every byte of data per entry increases the size of the hash table by 2.8 GB.

If we were to store the key (the short read) in the hash table, we would need about 32 bytes

per entry, or a table size of over 80 GB. In addition, any collisions would necessitate a linked

list type of structure for collision handling, resulting in more increases in the size of the table.

There is no need to store the key (actual read data) in the hash table. We store the read’s
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index to the reference genome in the hash table and use the reference genome itself to make

sure the read belonged in the hash table. Additionally, minimal perfect hash functions are only

for a fixed set of keys. Short read alignment uses a static reference. Thus, we eliminated the

need for collision detection by using a minimal perfect hash function for the table. Figure 3.3

and Algorithm 3 discuss the use of minimal perfect hash tables and their use in performing

short read alignments.

The software was written first along with a testing framework. The MPH creation algorithm

closely follows that of Belazzougui et al. [5], except we do not compress the intermediate values.

A suitable hash function was choosen, Jenkin’s Spooky hash [19], that would map easily into

hardware. A pictoral explanation of generalized minimal perfect hash construction can be

found at Hanov’s website [15]. The general process for creating the hardware was a multi-

step process: pick good algorithms, draw the designs, create a software model for the Convey

software simulator, create the components using Xilinx’s Core Generator or Verilog, test the

user made components for correctness and timing with a test bench, combine the components

together and test using Convey’s hardware simulator, synthesize and test the bit files. The

revised design drawings of the hardware are presented later in this chapter.

4.2 Overview of Convey Architecture

RAMPS’s hardware pipeline was built for use with the Convey hybrid-core computing

platform containing a minimum of 32GB of coprocessor memory. The Convey HC-1 and HC-2

are hybrid computers, containing a regular motherboard and a coprocessor board that contains

a set of 14 FPGAs (Figure 4.1). Eight FPGAs are wired as memory controllers (MCs), two

are used as an Application Engine Hub (AEH), and the remaining four are programmable

and called Application Engines (AEs). The host (x86) processor can send the AEH custom

instructions, which will then load a custom bitfile (branded as a “personality”) onto the AEs

and execute the custom instruction. The coprocessor contains its own memory, though the host

processor and coprocessor can share all memory in a cache coherent manner. More information

can be found in Convey’s documentation.
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Figure 4.1: The Convey system consists of both the coprocess board (pictured) and a regular
commodity server [10].

The distinct competitive advantage that the Convey system provides is its actual 80 GB/s

of memory bandwidth. Figure 4.1 shows the 16 memory DIMMs available on the coprocessor

board that allow it to access large amounts of memory quickly. In addition, the Convey system

has “scatter-gather” DIMMs, allowing random access to memory locations with speed on par

with sequential access to memory. In addition to raw hardware speed, Convey provides a rich

set of hardware interfaces for accessing memory in its personality development kit (PDK). The

PDK is built to allow developers to get their programs up and running quickly, without having

to spend time reinventing the memory subsystems. Each AE (Application Engine) is given

access to 16 memory controller ports, which are multiplexed to the eight MCs. The AEs operate

at a clock frequency of 150 MHz, allowing each memory controller port to make 150 million

memory requests per second. Using these memory controllers, along with Convey’s provided

read order queue and crossbar switch, greatly simplified the hardware design by allowing each
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MC port to access any address and by creating an ordered data flow.

The development of a program on Convey starts with the software. First, a software

emulator is written. This software emulator allows the developer to test the interface between

host machine and the coprocessor’s AEH (Application Engine Hub). This step typically involves

thinking about what memory should be moved or allocated on the coprocessor, what parameters

to pass to the application engines, and how this data is transferred to and from the coprocessor

through the AEH. It also allows the developer to create a model that can be used in the future

to test hardware code. The next step is to design the hardware and create a custom personality.

This step involves diagraming hardware layouts, writing and testing individual modules, testing

and fixing the larger top level module, and creating a bitfile by synthesizing the written HDL

(hardware description language) code.

4.3 Minimal Perfect Hash Creation

RAMPS’s minimal perfect hash (MPH) is created using a fairly simple algorithm discussed

in Algorithm 1. Before running the algorithm, the first step is to find the set of unique entries

that need to be stored in the hash table. This can be done by hashing each 100 base pair word

in the reference genome in a number of rounds, throwing away duplicates and storing collisions

for processing in the next round. After we have thrown away all the duplicates and processed

the left over collisions, we are left with a set of unique keys. With a set of known keys, we can

construct a minimal perfect hash using a generalized method called hash and displace [5].

After collecting a set of unique keys, all the keys are sorted using a two pass counting sort.

During the first pass, a count of the size of each bucket of the hash table is taken; if a key

collides with another key (they both hash to the same value), the bucket’s size is incremented.

Thus, after the first pass, the number of collisions for each entry in the hash table is known.

During the second pass, keys are placed into a buckets array sorted by the size of the bucket.

Since the hash function has an equal probability of choosing any given bucket, the size of a

bucket is typically orders small that the length of the hash table. For example, the largest

bucket size we encountered was 13 when the algorithm was used with the 2.8 billion entries in

the human genome. It is because of the small number of unique sizes that we are able to sort
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the keys in linear time with a two pass counting sort.

With the buckets now sorted, the algorithm begins to reseed buckets with a size of two

or greater. Reseeding ensures that the hash function will be “perfect” and no longer contain

collisions. Starting with the largest buckets, the keys in a bucket are reseeded such that they

no longer collide and will occupy empty spots in the hash table. The reseed value is stored in

an intermediate table and a bit field or bit array is updated to indicated that the locations in

the hash table are now occupied. This process continues with the next largest bucket until all

buckets containing two or more keys have been assigned a new seed.

Finally, once all buckets containing two or more keys have been reseeded, buckets containing

a signle key are placed into open spaces in the hash table. The offset from their original location

is recorded in the intermediate table. This can be done without looking at the keys, using

exclusively the information gained from the counting sort (the entries in the hash table with a

single entry are marked) and the information gained from reseeding (the bit array containing

a record of the empty and occupied slots in the hash table). The intermediate table provides

a minimal perfect hash for the given key set, and can now be used to add values to the table

to complete the key-value association.

Since the algorithm for MPH creation naturally falls into five stages, the hardware for

creating a minimal perfect hash table is broken into five major pipelines. Four of the major

pipelines require proper memory ordering, atomic increment operations, or atomic test and

set operations. These memory requirements can be solved by using a small cache, indicated

by a lock on the memory controller in Figures 4.6-4.9. Using out current design, it would be

impractical to run these four major pipelines on all four application engines available on the

Convey coprocessor board due to the complexity of maintaining cache coherence across all four

chips. However, Botelho’s dissertation [7] outlines ways of dividing the problem appropriately

for a distributive version of the algorithm that scales nearly linearly with the number of nodes

added.

The fifth major pipeline does not require special memory requirements, and thus it can be

run on all application engines. All five pipelines for MPH construction occupy two personalities:

the first personality contains pipelines 1-4 and the second personality contains pipeline 5. It
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should be noted that in Figures 4.6-4.12, the data flows from the left to the right of the

diagram over the course of time and stages are marked on memory boundaries. Figure 4.2

however, shows the data flow between application engines.
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Figure 4.2: RAMPS contains two personalities for creating the minimal perfect hash table. The
first features four different bitfiles (total of 6 hardware pipelines). The data is processed by
each hardware pipeline sequentially, starting with the first. Each major pipeline must process
the data completely before moving on to the next phase. Here, AE0 loops until all unique
reads in the genome have been found. Next, AE1 performs a two pass counting sort. AE2 then
reseeds large buckets, and AE3 finally displaces the singular buckets.

In RAMPS, the intermediate table and hash table are interleaved. With smaller table sizes

(less than 20 million), it makes sense to have a separate intermediate table with compressed

values so that the intermediate table can fit into the cache on a processor. In our case, with a

human sized genome near 3 billion entries, the extra complexity of compressing the intermediate

table was skipped and it was instead placed along with the values of the hash table. In fact, this

interleaving may improve performance marginally; offsets in the intermediate table are small

and the result may be within a few entries in the table, thus if cache lines on the chip are larger
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than 8 bytes it may result in a cache hit or the memory controller can combine operations since

the data may reside in the same row of a RAM module. The layout of a single entry can be

seen in Figure 4.3:

64 bit entry

index in genome count i value

  o!set  "ag

32+11 bit

hash table

(values only, no keys)

1+20 bit

intermediate table

(reseed or o!set)

Figure 4.3: An entry in the Minimal Perfect Hash table. The table is an array with one 8 byte
entry per unique read in the reference genome. The intermediate table is stored in 21 bits and
is used to find a unique index into the table for each key. The first 43 bits contain the value
associated with the key; i.e. the index of occurrence in the reference genome and a count of
how many times it occurs.

The software package of RAMPS, unlike the current version of the hardware, is configurable

using a command line argument to allow creating hash tables of any number of base pairs that

is a multiple of 4. The multiple of 4 was chosen because the bit packed representation stuffs

four base pairs per byte, thus keeping the data byte aligned.

The default number of base pairs used for creating the hash table is 100. The following

commands create a hash table using either the CPU (./create) or Convey coprocessor (./runcp):

./create -g human_g1k_v37.bin -h output_table.bin

./runcp -g human_g1k_v37.bin -h output_table.bin

The command line argument ‘l’ can be used to specify a different size, in bytes. For example,

a hash table of the genome using all reads of 36 base pairs can be generated by:

./create -g human_g1k_v37.bin -h output_table.bin -l 9

Additionally, the ‘-d’ command line argument specifies if the reference genome contains

both chains of the DNA and controls whether the hash function produces a normal hash or

a paired hash. A paired hash means that both chains of the DNA at a given index will hash

to the same value; e.g. hash(“AAAG”) == hash(“CTTT”). The software simply calculates a
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read’s pair (reverse the sequence and swap base pairs) and hashes whichever input is greater.

Paired hashing effectively doubles the number of reads you can align to a reference genome

that only contains one of the DNA chains, and is enabled by default.

4.3.1 Hardware Hash Function

Most of the computation of the algorithm occurs in the hash function. Jenkin’s Spooky

Hash [19] was chosen because it is both fast in software and easy to implement in hardware due

to its reliance on only shifts, adds, and XOR operations. RAMPS uses a slimmed down version

Jenkins’ Spooky Hash that has been stripped to work with only keys of size 25 bytes (100 base

pairs), though adjustments could easily be made to handle keys of any given bytes size below

a constant maximum. By stripping unnecessary branches and instructions, each hash requires

23 rotations, 23 XORs, 27 additions, and 1 mod operation. By grouping operations together,

a 34 stage pipelined hash function was created in hardware.
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Figure 4.4: The hardware hash pipeline is composed of several blocks which are further de-
scribed in Figure 4.5. The diagram here shows the mixing of the first 16 bytes followed by the
last 9 bytes. The seemingly random constant values help the hash function create a waterfall,
where a single bit change in the key being hashed causes all the bits to change with equal
probability.
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The pipeline stages listed in Figure 4.4 are registered, increasing the maximum allowed clock

frequency for the unit. Further registers could be added within the mix blocks for additional

speed improvements. The key is fixed at 25 bytes, or 100 base pairs. The hashing algorithm

hashes the key 16 bytes at a time, and has specific ending mix blocks for the last 9 bytes.
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Figure 4.5: The hash function pipeline in Figure 4.4 is composed of several subcomponents
shown here. To the left (a) are the mix blocks used for hashing the first 16 bytes of data. On
the right (b) is an ending mix block used to hash the last 9 bytes of the key.

Like the software version of the program, the hardware hash function supports paired

hashing; i.e. hash(“AAAG”) is equal to hash(“CTTT”). The hardware performs the necessary

wire assignments and bitwise not operation as the first stage of the pipeline, and computes

the hash of the larger of a read or the read’s antiparallel pair. This can be disabled using the

command line ‘-d’ flag.

4.3.2 Pipeline 1a/b - Find Unique Entries

The first step is to find all the unique entries that need to be stored in the hash table. This

can be done by hashing each 100 base pair word in the reference genome in a number of rounds,

throwing away duplicates and storing collisions for processing in the next round. Algorithm 2

shows that the process of removing duplicates.
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Algorithm 2 Pseudocode of Pipeline 1a/b

1: procedure Pipeline1a(list, genome, hashtable, collisions)
2: for (i = 0; i < length(genome)− 99; i++) do
3: list[i]← i;
4: end for
5: while list not empty do
6: erase(hashtable);
7: Pipeline1a(list, genome, hashtable, collisions);
8: Pipeline1b(hashtable, unique);
9: swap(list, collisions);

10: end while
11: end procedure

During the first round, all valid indices into the genome are added to a list for processing.

During the processing step (pipeline 1a), any portion of the genome that creates a collision

in the hash table is set aside in a collisions list for processing in the next round. Due to the

random nature of the hash function, roughly one-third of the indices collide and need to be

processed in the next round, leading to a total runtime that is proportional to 1.5 times the

length of the genome (sum of geometric series).

Figure 4.6 illustrates this process in more detail. At the beginning of each round, the hash

table is erased to remove leftover intermediate data from the previous round. First, an index

into the genome is loaded from the list. Next, that index is used to load a 100 base pair read

from the genome. While during the first round the indices are in order, the random nature of

collisions will cause subsequent rounds to be unordered. In stage 3, the read is sent through

the hashing pipeline in order to locate the correct index from the hash table. After finding the

hash table entry, control flow breaks in one of two directions. Either the entry is empty and

can be updated quickly, or there is a possible collision or duplication which must be checked

by loading the original index stored in the hash table. Duplication happens when the genome

contains multiple copies of the same 100 base pair sequence. Collisions occur the hash of when

two different 100 base pair sequences is equal.

An important component to Pipeline 1a, 2a/b, and 3 is the ability to perform atomic read-

write operations. This is indicated in the figures using a lock on the specified memory controller

ports. The atomic operations are implemented by using an ordinary cache with the addition
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of a lock bit. Any read operations to a locked address are placed into a replay buffer and can

receive the unlock signal from an incoming write operation with the same address.
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After a list has been processed, pipeline 1b (Figure 4.7) quickly runs over the hash table

to collect non-empty entries into a tight array. Since the order of the unique reads, or keys,

is unimportant, this step can utilize multiple processing units to achieve a significant speedup.

This step is necessary; pipelines 2a, 2b, and 5 will each iterate over the list of keys. Removing

the empty spaces now reduces the total memory requirement and eliminates memory operations

in the future. After copying all the unique keys to a results array, the round ends. If there

were any collisions, a new round begins by processing the list of indices added to the collisions

list.

4.3.3 Pipeline 2a/b - Counting Sort

With a set of unique keys, construction of the minimal perfect hash (MPH) can begin. As

described in Algorithm 1, the first step is to use a counting sort to store the keys into buckets

sorted by the size of the bucket. This is accomplished in two passes, but the hardware pipeline

is mostly the same for each. The exception is that the 2nd pass stores the unique index into

the buckets array, while the first only calculates the size of each bucket.

Before beginning, the hash table is erased. During the first pass, each index is hashed

and the corresponding entry in the hash table is incremented by one (indicating the number

of indices that hash to a given bucket). In addition, registers on the FPGA hardware are

used to keep a running total of the number of buckets of each size. This is accomplished by

simply incrementing and decrementing running total counts as each key is hashed. Since the

maximum expected bucket size is small [5], we can dedicate a small number of registers for this

purpose (RAMPS uses 30). By keeping track of the number of buckets of each size, it allows

the algorithm to use a counting sort that runs in time O(n) with respect to the number of keys,

n.

After calculating bucket size, the second pass sorts the keys. The initial stages of the

pipeline are reused in order to load a unique read, or key, hash it, and load the corresponding

value from the hash table. During the last stage of the pipeline, two possibilities exist every

time a table entry is loaded: either this is the first key encountered for a given bucket, or it

is not the first key. If it is the first key encountered for a given bucket, an appropriate index
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is calculated from the running totals calculated in the first pass. This index is then stored in

the hash table, and a tally is incremented for the bucket. If there is a tally that is not 0, or

an index stored in the hash table, than we know that the key is not the first key encountered

for the bucket. In this case, the tally is added to the bucket index stored in the hash table to

calculate the appropriate index for storing the unique read, or key, in the sorted buckets list.

Figure 4.8 shows the pipeline in more graphic detail.
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Figure 4.8: For the first pass, FIFO B and the MC port writing to the buckets array are
disconnected. The first step is to load a unique reference genome index, which is used to load
a 25 byte read from the genome in stage 2. In stage 3, the read is hashed to retrieve an index
into the hash table. After the entry from the hash table is loaded, stage 4 does one of two
things. If it is the 1st pass, it increments the count and saves the entry. If it is the 2nd pass,
the control calculates the correct index into the buckets array to store the index. The hash
table is updated with the location of the bucket in the buckets array and the number of indices
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4.3.4 Pipeline 3 - Reseed Large Buckets

Starting with the largest buckets, the keys within each bucket are reseeded such that they no

longer collide to the same spot in the hash table. The reseed value is stored in an intermediate
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section of the hash table. The hardware pipeline was designed to handle buckets containing 2

to 5 keys. There are too few buckets with a size greater than 5 to necessitate designing another

hardware pipeline. On a human genome scale, RAMPS software can reseed the buckets with a

size greater than 5 in less than 1 second. Buckets containing a single key are displaced in the

next hardware pipeline.

MC

MC

MC

MC

MC

FIFO

B

FIFO

B

FIFO

B

FIFO

B

FIFO

B

S
h

if
te

r

+

+

+

+

+

MC* 
FIFO

A
+Counter

Stage 1
Grab Indices in a 

Bucket

Stage 2
Load from Genome

Stage 3
Reseed All Indices in Bucket

Stage 4
Store New Seed to Hash Table &

Unlock Bit!eld

200

buckets_base_address

bit!eld_base_address

genome_base_address
MC Memory Controller

32

+

Control

1

1

FIFO

F

 H
a

sh

FIFO

H

0

table_base_address

+

MC* 

 H
a

sh

MC
FIFO

G

FIFO

C

FIFO

D
200

MC
FIFO

E

+

 H
a

sh

MC
FIFO

G

FIFO

C

FIFO

D
200

MC
FIFO

E

+

 H
a

sh
MC

FIFO

G

FIFO

C

FIFO

D
200

MC
FIFO

E

+

 H
a

sh

MC
FIFO

G

FIFO

C

FIFO

D
200

MC
FIFO

E

+

 H
a

sh

MC
FIFO

G

FIFO

C

FIFO

D
200

MC
FIFO

E

+

C
o

n
tr

o
l L

o
g

ic

Figure 4.9: The pipeline is run multiple times, once for each size of bucket between 5 and
2. The bucket size controls the multiplexor that stores a read into one of the five FIFOs in
bank C. Stage 4 performs a test and set operation on the bit array to ensure that each index
is assigned a unique slot in the hash table.
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Figure 4.9 the hardware pipeline for reseeding buckets. To reseed a single bucket, all the

keys and segments of the genome are first loaded. The reads are rehashed with a new seed for

the hash function, which results in the previously colliding keys to have different indices. A bit

array is checked to ensure that space is available in the hash table and to reserve the new slots

for the keys that were just reseeded. If any of the keys collide when rehashed or if they fall

into a taken spot in the hash table, the bucket is reseeded again. To reseed, the seed value to

the hash function is simply incremented because a single bit change in the key or seed results

in a waterfall change in the hash.

4.3.5 Pipeline 4 - Displace Singular Buckets

Once all large buckets containing two or more keys have been reseeded, the singular buckets

containing just one key are placed into open spaces in the hash table. The open spaces in the

hash table are those left empty after reassigning all keys that fell into large buckets. The offset

from their original location is recorded in the intermediate section of the table.
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This process, shown in Figure 4.10, must be done in order so that the keys receive small

offset values. This is done by running through the hash table and bit array in order. The first

entry in the hash table that has only a single key is matched with the first empty index in the

bit array. The next single entry is matched with the next empty spot in the hash table, and

so on, until the last single entry is matched with the last empty spot in the hash table. After

this step is complete, the minimal perfect hash has been created. The only step left is to use

the MPH to add the values to the hash table.

4.3.6 Pipeline 5 - Add Values to Table

Finally, this pipeline adds the unique indices and other data to the hash table. Unlike

previous pipelines for minimal perfect hash table creation, this pipeline can be run on all four

application engines (AEs). RAMPS partitions the list of unique keys in the following manner:

AE0 adds keys 0, 4, 8..., AE1 adds keys 1, 5, 9..., and so on. The process of storing data in the

table is similar to the process discribed in Figure 3.3 and shares similarity with the hardware

aligner.
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4.4 Alignment via Hash Table Lookup

The alignment algorithm is simply to retrieve the correct alignment from the hash table.

All possible exact match alignments have been preprocessed from the genome into the hash

table. To retrieve an index of occurrence, the program simply attempts to lookup the read in

the hash table, validating the index of occurrence is corrected by comparing the read to the

genome at the retrieved index. Algorithm 3 formally describes this process.

Algorithm 3 Pseudocode of Hash Table Lookup

1: procedure Align(reads, genome, hashtable, results)
2: for (i = 0; i < length(reads); i++) do
3: r ← reads[i]; ◃ Stage 1
4: h← hash(r, seed = 0); ◃ Stage 2
5: ivalue← intermediateTable[h];
6: if (ivalue is an offset) then ◃ Stage 3
7: index← hash(r, seed = 0) + ivalue;
8: else
9: index← hash(r, seed = ivalue);

10: end if
11: entry ← hashtable[index];
12: check ← genome[entry.index]; ◃ Stage 4
13: if (r == check) then ◃ Stage 5
14: results[i]← entry;
15: else
16: results[i]← NULL;
17: end if
18: end for
19: end procedure

The five stages of the hardware pipeline for alignment are shown and described in both

Figure 4.12 and Algorithm 3. This pipeline is duplicated across all four application engines

(AEs). The set of reads is split into four pieces, and each AE contains an identical pipeline to

process its subset of the reads.

Figure 4.12 shows the flow of data through the aligner’s hardware pipeline. In stage 1 of

the pipeline, a bank of four counters and the base address of the read data is used to calculate

the address for a given read. These addresses are used to load short reads from four memory

controller ports. After a memory latency of about 100 cycles, stage 2 hashes the short reads
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to obtain an index for retrieving a value from the intermediate table. In stage 3, the value

from intermediate table allows RAMPS to compute an index that is guaranteed not to collide

with other entries in the table. The value is either a new seed value for the hash function, or

an offset. The unique index is calculated and used to load the value from the hash table. In

stage 4, the index in the genome loaded from the hash table is used to load the corresponding

100 base pairs from the reference genome. In stage 5, the reference genome is compared to

the read. If they match, the index of occurrence in the genome and number of occurrences are

recorded in an output table in memory.

When the pipeline is full, each stage loads or stores data to its memory controller ports on

every clock cycle. Much of the combinatorial logic, such as address calculations can occur at

the same frequency. The exception is the hardware hash functions, each of which is a 34 stage

pipeline. By allowing each portion of the pipeline to perform some part of the alignment on

every clock cycle, we efficiently utilize resources and are able to achieve a theoretical throughput

of 150 million reads per second per application engine (or 600 million reads per second). In

practical tests, the alignment speed was approximately 350 million reads per second.
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In addition to the hardware aligner, which can only perform exact matches in its current

implementation, the software aligner can be configured to split long reads into smaller parts,

each part returning its own index of occurrence. If any indices match, a comparison is done

between the entire read and the genome at the matching index allowing for mismatches. This

allows the ability of finding matching locations in the reference genome that could be possible

locations of the read data. The software aligner takes the following arguments:

-l # (read length, default = 25)

-s # (key length, default = read length)

-f # (offset, default = key length)

The read length is the length of the read data in bytes. The aligner assumes that the read

data is 8-byte aligned. For example, if using the default 25 byte read size, each read will occupy

32 bytes (the last 7 bytes are left empty) in order to align to an 8 byte boundary. The key

length is the size of the key in bytes used for creating the hash table. The offset is used by the

software aligner to perform more or less hashes in order to improve sensitivity. The following

is an example of the terminal commands used to encode fastq data into the binary format

and align the data it with three settings for the software aligner: exact matches, a medium

sensitivity setting, and a higher sensitivity setting:

cat ERR050082.filt.fastq | ./fastq2bin > read_data.bin

./align_exact -g human_g1k_v37.bin -h hashtable_100.bin -r read_data.bin

./align -g human_g1k_v37.bin -h hashtable_32.bin -r reads.bin -s 8

./align -g human_g1k_v37.bin -h hashtable_32.bin -r reads.bin -s 8 -f 1

In the example using the medium sensitivity setting, the read length is the default of 25

bytes, while the hash table was created using 8 byte words from the reference genome (32 base

pair). The technique used was to take three 32bp chunks out of the 100bp read, take the index

that was in the majority out of the three chunks, and do a comparison between the genome at

that index allowing for up to 5 mismatches. Though numbers will vary based upon the quality

of read data used, this procedure was able to increase the number of reads aligned by about

20% up to 75%, whereas the number of reads containing exact alignments was 52%.
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CHAPTER 5. RESULTS

5.1 Preprocessing Runtime

Most short read aligners perform preprocessing of the reference genome into a more suitable

data structure that supports faster queries. Traditionally, it is faster to download the prepro-

cessed data structure that someone else has created that to build your own. Using the index

build times listed on various project websites and in papers, we can compare the preprocessing

time required before doing alignment to a certain reference genome.

Table 5.1: Preprocessing runtime comparison of popular short read aligners

Algorithm Platform Preprocessing Memory (GB)

Bowtie [22] CPU 4-5 hours 16

BWA [24] CPU 3 hours 2.5

RAMPS CPU 2-3 hours 60

RAMPS Convey 90 seconds 60

RAMPS’s preprocessing time in hardware is orders of magnitudes faster than other ap-

proaches. While other hardware hash functions exist and hash tables with billions of entries

have been created, RAMPS is comparatively much faster in hardware:

Table 5.2: Runtime comparison of popular minimal perfect hash algorithms

Tool Platform Keys/second

CHD [5] CPU 770,000

BPZ [5] CPU 910,000

RAMPS CPU 260,000

Botelho [7] 14 CPU Cluster 4,000,000

RAMPS Convey 30,000,000

It should be noted that this is not a fair comparison. RAMPS performs the extra steps of
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removing duplicates from the genome, indirectly referencing the keys in the genome via index,

and processed 2.8 billion keys. Both CHD and BPZ were being tested on a set of 20 million

URLs.

5.2 Alignment Runtime

Our short read aligner’s runtime is 895 milliseconds for processing 284,881,619 short read

sequences from the NA06985 individual using human reference genome g1k v37 [1]. The timer

starts before the reads begin streaming to the hardware pipeline, and ends after the last read’s

index and count are written to the result array. Using alignment speeds from Knodel et al. [20],

the University of Hong Kong [21], and various papers, we can compare our runtime with other

short read aligners:

Table 5.3: Performance comparison of popular short read aligners

Tool Platform Speed (reads/s) Memory (GB)

MAQ [26] CPU 50 1.2

SOAP CPU 70 14.7

SOAP2 [27] CPU 2,000 5.4

Bowtie [22] CPU 2,500 2.3

BWA [24] CPU 10,000 3.5

SOAP3 [21] GPU 200,000 3.2

BFAST [16] CPU Cluster 700,000 24.0

BWA-Convey Convey 350,000 -

BWT-GPU [32] GPU 400,000 10.0

RAMPS CPU 800,000 23.3

RAMPS Convey 315,000,000 23.3

RAMPS’s runtime omits the one time costs associated with loading both a 22.5 GB hash

table and a 780 MB reference genome in to memory. In addition, the stated runtime does

not include the time it takes to load the reads from disk into memory. Convey’s internal

benchmarking puts the bandwidth from host memory to coprocessor memory at 2.4 GB/second.

Since the aligner’s pipeline can handle approximately 10 GB/second of read data, the host to

coprocesser memory bandwidth is currently RAMPS’s bottleneck. With an estimated world

sequencing output of 13 quadrillion base pairs per day [31] (40 GB/s in compressed form), a
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few dozen RAMPS machines would be able to process all the data.

5.3 Hardware Usage

Another consideration was RAMPS’s use of available hardware resources on the Xilinx

Virtex 5 LX330 [34]. Each of the four FPGAs on the Convey system has 288 36Kbit block

RAMs, 207,360 Slice LUTs, and 207,360 Slice Registers. The data in the table below was

collected from the map and place & route reports created after building the various bit files.

It should be noted that a significant portion of the FPGA resources are used by Convey’s

optional memory components, such as the read order queue, crossbar switch, and write complete

interface.

Table 5.4: Hardware resource usage per application engine

Personality Block RAM LUTs Flip-Flops MCs (Rd-Wr) Write Complete

Simpleton 20% 32% 39% 16-16 Yes

Aligner 30% 43% 45% 11-1 No

MPH Create 1a/b 32% 68% 72% 12-16 Yes

MPH Create 2a/b 28% 67% 69% 7-16 Yes

MPH Create 3 44% 81% 85% 8-16 Yes

MPH Create 4 23% 29% 35% 3-16 No

MPH Create 5 28% 43% 45% 8-1 No

To estimate the amount of resources used by Convey’s hardware interfaces to the memory

controllers and application engine hub, a superfluous control personality, named Simpleton,

was created. The Simpleton personality includes Conveys read order queue, crossbar switch,

and write complete interfaces. It increments (reads and writes) a single address from memory

on all the memory controller ports and nothing else. Table ?? shows the hardware usage of

each pipeline. All designs utilize the crossbar switch and read order queue, but those pipelines

that utilize the write complete interface are labeled. Additionally, the number of ports used

for read operations and write operations are marked; if one of the operations is tied to zero,

some of the logic used for controlling read ordering is optimized out of the design. All memory

controller write ports are utilized in the MPH creation pipelines 1-4 because these pipelines

implement an erasing function in addition to their more complex pipelines.
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RAMPS’s alignment runtime, like many of the other short read aligners, is memory bound.

The current design uses 12 out of the 16 available memory controller ports. Putting multi-

ple pipelines on a single AE in order to use all available memory bandwidth would increase

complexity and lead to only a marginal improvement of performance.

5.4 Alignment Percentage (Sensitivity)

RAMPS’s hardware package is currently designed for a constant read length, though there

are simple tweaks that could be used to support creating a hash table for read lengths less

than 100 base pairs. RAMPS’s software package includes options to create hash tables based

on any length of read that is a multiple of 4 (so as to align to the byte boundary). When

performing alignments, long reads can be split into smaller parts, each part returning its own

index of occurrence. If any indices match, a comparison is done between the entire read and

the genome allowing for mismatches.

In the following table, the read length is 25 bytes (100 base pairs). The hash table was

composed of all 32 base pair words in the human genome, and alignment would divide each

read into three parts: bytes 0-7, 8-15, 16-23. By reanalyzing the reads that didn’t have exact

matches, we can improve the alignment percentage beyond exact matches:

Table 5.5: Alignment comparison of popular short read aligners

Tool Platform Max Alignment %

MAQ [26] CPU 93.2

SOAP CPU 93.8

SOAP2 [27] CPU 93.6

Bowtie [22] CPU 91.7

SOAP3 [21] GPU 96.8

RAMPS CPU 75.4

RAMPS FPGA 52.4

The hardware (FPGA) implementation performs only exact matches, while the software

aligner allows up to 5 mismatches, though it is not guaranteed to find the best location or

report all locations. By fundamentally changing the preprocessing time, we can encourage the

use of reference genomes that more closely match the read data; e.g. by using a parent or
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relative’s DNA. Combined with an increase in read quality, RAMPS can align more of the

data.
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CHAPTER 6. CONCLUSION

6.1 Summary of Results

RAMPS offers the bioinformatics community a new tool for fast exact match short read

alignment with minimal preprocessing time. RAMPS is both the first known implementation

of a generalized minimal perfect hash creation algorithm using FPGAs and an award winning,

first place, exact match short read aligner [11].

Currently, the number of mismatches between the reference genome and read sequences

occur from both imperfect read quality and genetic differences between individuals. The DNA

of two individuals differs by roughly 0.1%, or about one base pair out of a thousand [11].

With minimal preprocessing, we fundamentally change the computational problem. Instead of

using a generic human reference genome, people may now be able to use the DNA sequence

of a blood family member as a reference in order to increase the percentage of exact matches.

Higher quality sequencing machines already produce data sets that contain more than 60%

exact matches. Thus, as quality improves and with the ability to use references that contain

nearly identical DNA, exact match read aligners like RAMPS will be able to handle a larger

share of the data.

6.2 Future Work

The alignment part of the problem disappears from the runtime when using approaches like

RAMPS. Future work will be needed to pull reads from disk or the network at speeds near 10

GB/s in order to keep such a hardware pipeline busy. While RAMPS offers the potential of

increasing the speed of exact matches by orders of magnitude, work still needs to be done for

inexact matching allowing mismatches and indels.
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One could also perform a comparative power study between the various aligners, though the

results would likely be moot. FPGAs are known to be power efficient; their custom hardware

means more energy is spent solving the problem and less energy is wasted. The RAMPS

architecture spends such a small fraction of time performing alignments and runs at a clock

frequency of 150 MHz, and would likely consume a fraction of the energy compared with other

aligners.

Additionally, there are other application domains in which the RAMPS architecture could

prove useful with minimal modification. In 2011, Google developed their own hash function,

CityHash [30], to improve the speed of their hash table lookups at their data centers. A

package similar to RAMPS, but allowing for variable length keys, would have been orders of

magnitude faster. Minimal perfect hashing is an ideal answer for transforming URLs, which are

normally static, into integers in a fixed range. Instead of using B-trees for databases numbering

in the billions, minimal perfect hashing could provide solutions for new frontiers of database

applications.
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