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Overview 

• The Challenge 

• What is Shepard? 

– Software for Minimal Perfect Hash Table Creation 

– FPGA hardware pipeline for fast Hash Table lookups 

• How fast is it? 

• What’s next? 
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The Challenge 

• Align millions of short DNA sequences to a reference 
genome. 

• Current aligners (simplified): 

 

 

 

 

• Our Solution: 

– One giant hash table 
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What is a MPH? 

• MPH = Minimal Perfect Hash 

• Given a fixed set of keys… 

– Perfect Hashes have no collisions 

– Minimal Perfect Hashes contain no empty buckets (they are 
memory efficient)  

 

• For large sets of keys, you can create a general MPH in 
O(n) time. 

– General MPH algorithms require using an intermediate table.   

– The intermediate table is the MPH. 
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Minimal Perfect Hash Function Example 

• Hash the key once to retrieve a few bits of information 
stored in the intermediate table 

• Do one of the following: 

– Rehash with the new seed from the intermediate table (any 
buckets that had a collision would be rehashed*) 

– Add the offset from the intermediate table to the initial index.  

• The MPH is created by choosing values for the 
intermediate table so that a given set of keys will not 
collide! 
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Minimal Perfect Hash Example 
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Shepard’s Software 

• Differences between our algorithm and other 
general purpose MPH algorithms (CHD) 

– CHD compresses the intermediate table down to 
between 2 and 4 bits per entry 

– Shepard does not compress (no need); if entries are 8 
byte aligned, there are 20 bits per entry available for 
the intermediate table 
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Speed of Shepard’s Hash Table Construction 

• Current MPH creation 
using C code (CHD) 

– 800,000 entries / sec 
*only 20 million entries 

 

• Shepard MPH C code 

– 300,000 entries / sec 
*using 2.8 billion entries 

– For 2.8 billion entries, 
takes ~2.5 hours 

 
Graph from: Hash, displace, and compress 

Djamal Belazzougui et al 
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Future Work 

• Hardware Pipeline for Hash Table Creation 

– The 6 stages for hash table creation are  
simple for-loops 

– Assuming:  
• ~40 memory operations per entry in construction  

• Application is memory bound 

• Convey HC-1 can perform 10 billion memory ops / sec 

– We could create the hash table in about 12 seconds, more 
than 250x faster than CHD 

– Concurrency Issues 
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Software Implementation 

10 



Software Implementation 

• Speed 

– Single threaded: 
• 1,000,000 reads / second (using total program execution time) 

– Performance increases when using multiple threads 
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The Convey HC-1 
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The Convey HC-1 
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Convey Custom AE Development Process 

• It’s simple! 

• Take your original program, pull out a kernel written in 
C/C++ 

• Turn the kernel into a CAE instruction (define ISA) 

• Write a software simulator of the program 

– Emulates custom hardware 

– Validates memory accesses 

– Validates AEG registers 

• Write hardware description in Verilog or VHDL 

– Use the software simulator to test your design (quick) 

– Build a bitfile (slow) 
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Hardware Implementation 
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Hash Function Pipeline 

• Jenkin’s Spooky Hash 

• Fixed the pipeline specifically for 100 base pair reads 
(25 bytes) 

 

• Hash function consists of rotations, additions, and XOR 
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Hash Function Pipeline Implementation 
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Hash Function Pipeline Implementation 
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Speed 

• 350,000,000 reads per second 

 

 

 
 
 

 

• Exact matches only! 

• % aligned depends on the quality of the reference genome and 
the read data 

• Had we used better read data (such as the data used in the 
SOAP3 paper), the % aligned would be as high as 60.3% 
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Future Work 

• Let’s update the pipeline to allow mismatches! 

 

• The idea:  
– Split the read into n parts.  Use a hash table to lookup the index of 

these parts.   

– Compare the indices of the parts.  If any of the indices match, we 
can compare the read to the genome to see how many mismatches 
occurred! 

 

• The time cost lies in the extra 2*n memory operations that 
must be performed.   
– Our original design only used 12 of the 16 memory controllers, so if 

n=3, we would incur no time penalty!   

– We get a “free lunch” by using all of the available resources. 
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Future Work 

100 base pair read 

1/nth  of the read 1/nth  of the read 1/nth  of the read 

Index Index Index 

Compare Indices 

Hash Table Lookup Hash Table Lookup Hash Table Lookup 
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Future Work Example 

AAAAAAAAAACCCCGCCCCCTTTTTTTTTT (Read length = 30) 

AAAAAAAAAA CCCCGCCCCC TTTTTTTTTT 

1000 2351 1020 

Hash Table Lookup Hash Table Lookup Hash Table Lookup 

Compare Indices 

Subtract 10 Subtract 20 Subtract 0 
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Future Work Example 

1000 2351 1020 

Compare Indices 

Subtract 10 Subtract 20 Subtract 0 

Index 1000 matched more than 
one part of the read! 

AAAAAAAAAACCCCGCCCCCTTTTTTTTTT AAAAAAAAAACCCCCCCCCCTTTTTTTTTT 

Let’s pull 30 base pairs from the 
reference genome at index 1000. 

Compare Read with Genome 
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Future Work Example 

• The comparison of the genome and a read is fairly 
simple in hardware for mismatches: 

– XOR the genome with the read 

– Count the number of 1’s.  If all 0’s, it’s an exact match. 

 

• It becomes slightly more complex for 
insertions/deletions, but the same approach can be 
taken for comparison 

 

 

 

24 



Future Work Risks 

• What affect will the presence of duplicates have on the 
alignment %? 

– At 100 base pairs, 2.36% of the genome is a duplicate of itself. 

– At 36 base pairs, 11% of the genome is a duplicate of itself. 

 

• Let’s test in software and find out! 
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Conclusion (1/2) 

• We implemented our own software to create MPH table: 

– Our Speed:   300,000  entries / sec 

– Other software (CHD):  800,000    entries / sec 

 

• Future Work  

– Increase the speed to 250,000,000 entries / sec 

– This would allow us to make the pre-processing step part of the 
alignment process! 

– Instead of using a generic human reference genome, people may be able to 
use the DNA sequence of a blood family member as a reference in order to 
increase the percentage of exact matches. 

– The multi-port cache is useful IP for future projects utilizing the Convey HC-1 
(allows atomic read-write) 
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Conclusion (2/2) 

• We implemented our own hardware for read alignment: 
– Speed: 350,000,000  reads / sec 

– Alignment: 25% 

– About 60x speedup over SOAP3 (GPU) 

– Over 100,000x speedup over Bowtie (CPU) 

– Con: exact match only 

 

• Future Work 
– Increase the alignment percentage by gaining the ability to detect 

mismatches, insertions, and deletions using the hashing approach. 

– This would make the project applicable to real-world sequence 
alignment.  We can alter the pipeline without loosing too much 
speed. 
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Questions 

28 



Future Work 
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Future Work - Concurrency Solution 

• Divide the hash table and keys in four, one for each of 
the four FPGAs (AEs) on the Convey HC-1 

– Use the first two bits of the key to separate the hash table 

– Need to keep track of the size of each hash table, though they 
should be roughly the same size 

 

– This gets rid of AE to AE concurrency issues by separating the 
problem 

 

• For stages 2, 4, and 5, implement a cache on each AE for 
handling the rare case of a concurrency issues. 
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Future Work - The Cache 

Cache Crossbar-Switch 

Cache 
Port 

Cache 
Port 

Cache 
Port 

Cache 
Port 

Cache 
Port 

Cache 
Port … 

Cache 

MC0 

Cache 

MC1 

Lock Order 
Queue 

Lock Order 
Queue 

Cache 

MC2 

Cache 

MC3 

Lock Order 
Queue 

Lock Order 
Queue 

Cache 

MC4 

Cache 

MC7 

Lock Order 
Queue 

Lock Order 
Queue 

… 

… 

… 
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Future Work - The Cache 

• 16 Cache ports 
• Use the Write Complete interface 
• No crossbar, no read order queue, no strong order queue 
• Write back on replace 
• The cache would need the ability to Lock certain cache lines to a 

given Cache Port.  Store the lock with the cache line. 
 

• Lock Order Queue 
– If a request for a memory address comes in, and the cache is locked, the 

request waits until it is unlocked 
 

• The cache will provide an infrastructure that we can use more 
generally in other projects utilizing the Convey HC-1.  It allows 
strongly-ordered memory operations across multiple Memory 
Controllers. 
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Construction Algorithm Visualized! 
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Algorithm 

• Stage 1 (create unique) 

– Create a list of all N of your <key, value> pairs to be added to 
the hash table 

• Stage 2 

– Hash every key into a bucket to see which spaces in the hash 
table will have collisions 

– This amounts to having an array of size N initialized to all 
zeros.  Then, you hash every key and increment the value at 
that index. 

• Stage 2a 

– Count the number of buckets of each size.  Since the max 
bucket size is small (< 20), this can be done during Stage 2. 

34 



Algorithm (Continued) 

• Stage 3 (sorting) 

– Sort the keys by bucket size (largest to smallest) 

– Using the collision count values from stage 2 and the size of 
each bucket, this can be done in O(N) time. 

• Stage 4 (reseed big buckets) 

– For each bucket size >= 2, starting with the largest, reseed the 
bucket 

– This involves initializing an bit array with all 0’s. 

– For each bucket (contains 2 or more keys), rehash all the keys 
from the bucket with a new seed.  Check the bit array that all 
keys have a spot in the final array 

– Store the new seed in the intermediate table. 
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Algorithm (Continued) 

• Stage 5 (displace singular buckets) 

– For each bucket size = 1, find the next available empty space in 
the bit array 

– Place the key in this position, recording the offset from the 
original location in the intermediate table 

• Stage 6 (add values to hash table) 

– The intermediate table is your a MPHF 

– Simply place the values in the final output table. 
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Example 

• We are going to create a MPH Table for the following 
keys: 
– Armadillo 

– Bird 

– Cat 

– Dog 

– Elephant 

– Frog 

– Garage 

– Horse 

– Iguana 

– Jaguar 
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Stage 2 

• Keys: 

 

• Hash(seed=0) 

 

Counts 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

Bucket Size Number 

0 10 

1 0 

2 0 
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Stage 2 

• Keys: 

– Armadillo 

• Hash(seed=0) 

– 1 

Counts 

0 

1 

0 

0 

0 

0 

0 

0 

0 

0 

Bucket Size Number 

0 9 

1 1 

2 0 
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Stage 2 

• Keys: 

– Armadillo 

– Bird 

• Hash(seed=0) 

– 1 

– 5 

Counts 

0 

1 

0 

0 

0 

1 

0 

0 

0 

0 

Bucket Size Number 

0 8 

1 2 

2 0 
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Stage 2 

• Keys: 

– Armadillo 

– Bird 

– Cat 

• Hash(seed=0) 

– 1 

– 5 

– 4 
Counts 

0 

1 

0 

0 

1 

1 

0 

0 

0 

0 

Bucket Size Number 

0 7 

1 3 

2 0 

41 



Stage 2 

• Keys: 

– Armadillo 

– Bird 

– Cat 

– Dog 

• Hash(seed=0) 

– 1 

– 5 

– 4 

– 8 

 

Counts 

0 

1 

0 

0 

1 

1 

0 

0 

1 

0 

Bucket Size Number 

0 6 

1 4 

2 0 
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Stage 2 

• Keys: 

– Armadillo 

– Bird 

– Cat 

– Dog 

– Elephant 

 

• Hash(seed=0) 

– 1 

– 5 

– 4 

– 8 

– 3 

 

Counts 

0 

1 

0 

1 

1 

1 

0 

0 

1 

0 

Bucket Size Number 

0 5 

1 5 

2 0 
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Stage 2 

• Keys: 

– Armadillo 

– Bird 

– Cat 

– Dog 

– Elephant 

– Frog 

• Hash(seed=0) 

– 1 

– 5 

– 4 

– 8 

– 3 

– 1 

Counts 

0 

2 

0 

1 

1 

1 

0 

0 

1 

0 

Bucket Size Number 

0 5 

1 4 

2 1 
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Stage 2 

• Keys: 

– Armadillo 

– Bird 

– Cat 

– Dog 

– Elephant 

– Frog 

– Garage 

• Hash(seed=0) 

– 1 

– 5 

– 4 

– 8 

– 3 

– 1 

– 9 

Counts 

0 

2 

0 

1 

1 

1 

0 

0 

1 

1 

Bucket Size Number 

0 4 

1 5 

2 1 
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Stage 2 

• Keys: 

– Armadillo 

– Bird 

– Cat 

– Dog 

– Elephant 

– Frog 

– Garage 

– Horse 

• Hash(seed=0) 

– 1 

– 5 

– 4 

– 8 

– 3 

– 1 

– 9 

– 5 

Counts 

0 

2 

0 

1 

1 

2 

0 

0 

1 

1 

Bucket Size Number 

0 4 

1 4 

2 2 
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Stage 2 

• Keys: 

– Armadillo 

– Bird 

– Cat 

– Dog 

– Elephant 

– Frog 

– Garage 

– Horse 

– Iguana 

• Hash(seed=0) 

– 1 

– 5 

– 4 

– 8 

– 3 

– 1 

– 9 

– 5 

– 0 

 

 

 

Counts 

1 

2 

0 

1 

1 

2 

0 

0 

1 

1 

Bucket Size Number 

0 3 

1 5 

2 2 
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Stage 2 

• Keys: 

– Armadillo 

– Bird 

– Cat 

– Dog 

– Elephant 

– Frog 

– Garage 

– Horse 

– Iguana 

– Jaguar 

• Hash(seed=0) 

– 1 

– 5 

– 4 

– 8 

– 3 

– 1 

– 9 

– 5 

– 0 

– 7 

 

 

 

 

Counts 

1 

2 

0 

1 

1 

2 

0 

1 

1 

1 

Bucket Size Number 

0 2 

1 6 

2 2 
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Stage 2 

• Keys: 

– Armadillo 

– Bird 

– Cat 

– Dog 

– Elephant 

– Frog 

– Garage 

– Horse 

– Iguana 

– Jaguar 

• Hash(seed=0) 

– 1 

– 5 

– 4 

– 8 

– 3 

– 1 

– 9 

– 5 

– 0 

– 7 

 

 

 

 

Counts 

1 

2 

0 

1 

1 

2 

0 

1 

1 

1 

Bucket Size Number 

0 2 

1 6 

2 2 
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Stage 3 

• Keys: 

– Armadillo 

– Bird 

– Cat 

– Dog 

– Elephant 

– Frog 

– Garage 

– Horse 

– Iguana 

– Jaguar 

Counts 

1 

2 

0 

1 

1 

2 

0 

1 

1 

1 

Bucket Size Number 

0 2 

1 6 

2 2 

New Index 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 
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Stage 3 

• Keys: 

– Armadillo 

– Bird 

– Cat 

– Dog 

– Elephant 

– Frog 

– Garage 

– Horse 

– Iguana 

– Jaguar 

 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

 

 

 

 

Counts 

1 

2 

0 

1 

1 

2 

0 

1 

1 

1 

Bucket Size Number 

0 2 

1 6 

2 2 

New Index 

4 

- 

- 

- 

- 

- 

- 

- 

- 

- 
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Stage 3 

• Keys: 

– Armadillo 

– Bird 

– Cat 

– Dog 

– Elephant 

– Frog 

– Garage 

– Horse 

– Iguana 

– Jaguar 

 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

 

 

 

 

Counts 

1 

2 

0 

1 

1 

2 

0 

1 

1 

1 

Bucket Size Number 

0 2 

1 6 

2 2 

New Index 

4 

0 

- 

- 

- 

- 

- 

- 

- 

- 
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Stage 3 

• Keys: 

– Armadillo 

– Bird 

– Cat 

– Dog 

– Elephant 

– Frog 

– Garage 

– Horse 

– Iguana 

– Jaguar 

 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

 

 

 

 

Counts 

1 

2 

0 

1 

1 

2 

0 

1 

1 

1 

Bucket Size Number 

0 2 

1 6 

2 2 

New Index 

4 

0 

- 

5 

- 

- 

- 

- 

- 

- 
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Stage 3 

• Keys: 

– Armadillo 

– Bird 

– Cat 

– Dog 

– Elephant 

– Frog 

– Garage 

– Horse 

– Iguana 

– Jaguar 

 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

 

 

 

 

Counts 

1 

2 

0 

1 

1 

2 

0 

1 

1 

1 

Bucket Size Number 

0 2 

1 6 

2 2 

New Index 

4 

0 

- 

5 

6 

- 

- 

- 

- 

- 
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Stage 3 

• Keys: 

– Armadillo 

– Bird 

– Cat 

– Dog 

– Elephant 

– Frog 

– Garage 

– Horse 

– Iguana 

– Jaguar 

 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

 

 

 

 

Counts 

1 

2 

0 

1 

1 

2 

0 

1 

1 

1 

Bucket Size Number 

0 2 

1 6 

2 2 

New Index 

4 

0 

- 

5 

6 

2 

- 

- 

- 

- 
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Stage 3 

• Keys: 

– Armadillo 

– Bird 

– Cat 

– Dog 

– Elephant 

– Frog 

– Garage 

– Horse 

– Iguana 

– Jaguar 

 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

 

 

 

 

Counts 

1 

2 

0 

1 

1 

2 

0 

1 

1 

1 

Bucket Size Number 

0 2 

1 6 

2 2 

New Index 

4 

0 

- 

5 

6 

2 

- 

7 

- 

- 
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Stage 3 

• Keys: 

– Armadillo 

– Bird 

– Cat 

– Dog 

– Elephant 

– Frog 

– Garage 

– Horse 

– Iguana 

– Jaguar 

 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

 

 

 

 

Counts 

1 

2 

0 

1 

1 

2 

0 

1 

1 

1 

Bucket Size Number 

0 2 

1 6 

2 2 

New Index 

4 

0 

- 

5 

6 

2 

- 

7 

8 

- 
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Stage 3 

• Keys: 

– Armadillo 

– Bird 

– Cat 

– Dog 

– Elephant 

– Frog 

– Garage 

– Horse 

– Iguana 

– Jaguar 

 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

 

 

 

 

Counts 

1 

2 

0 

1 

1 

2 

0 

1 

1 

1 

Bucket Size Number 

0 2 

1 6 

2 2 

New Index 

4 

0 

- 

5 

6 

2 

- 

7 

8 

9 
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Stage 3 

• Keys: 

– Armadillo 

– Bird 

– Cat 

– Dog 

– Elephant 

– Frog 

– Garage 

– Horse 

– Iguana 

– Jaguar 

• Sorted Keys: 

– Armadillo 

– Frog 

– Bird 

– Horse 

– Iguana 

– Elephant 

– Cat 

– Jaguar 

– Dog 

– Garage 

 

– 1 

– 5 

– 4 

– 8 

– 3 

– 1 

– 9 

– 5 

– 0 

– 7 

 

 

 

 

Counts 

1 

2 

0 

1 

1 

2 

0 

1 

1 

1 

Bucket Size Number 

0 2 

1 6 

2 2 

New Index 

4 

0 

- 

5 

6 

2 

- 

7 

8 

9 
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Stage 4 

• From largest to smallest 

– Armadillo 

– Frog 

– Bird 

– Horse 

– Iguana 

– Elephant 

– Cat 

– Jaguar 

– Dog 

– Garage 

 

 

– 1 -> 2 

– 1 -> 7 

– 5 

– 5 

– 0 

– 3 

– 4 

– 7 

– 8 

– 9 

 

 

 

 

Bit Array 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

Intermediate 
Table 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 
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Stage 4 

• From largest to smallest 

– Armadillo 

– Frog 

– Bird 

– Horse 

– Iguana 

– Elephant 

– Cat 

– Jaguar 

– Dog 

– Garage 

 

 

– 1 -> 2 

– 1 -> 7 

– 5 

– 5 

– 0 

– 3 

– 4 

– 7 

– 8 

– 9 

 

 

 

 

Bit Array 

0 

0 

1 

0 

0 

0 

0 

1 

0 

0 

Intermediate 
Table 

0 

reseed = 1 

0 

0 

0 

0 

0 

0 

0 

0 
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Stage 4 

• From largest to smallest 

– Armadillo 

– Frog 

– Bird 

– Horse 

– Iguana 

– Elephant 

– Cat 

– Jaguar 

– Dog 

– Garage 

 

 

– 1 -> 2 

– 1 -> 7 

– 5 -> 1 

– 5 -> 9 

– 0 

– 3 

– 4 

– 7 

– 8 

– 9 

 

 

 

 

Bit Array 

0 

1 

1 

0 

0 

0 

0 

1 

0 

1 

Intermediate 
Table 

0 

reseed = 1 

0 

0 

0 

reseed = 1 

0 

0 

0 

0 
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Stage 5 

• From largest to smallest 

– Armadillo 

– Frog 

– Bird 

– Horse 

– Iguana 

– Elephant 

– Cat 

– Jaguar 

– Dog 

– Garage 

 

 

– 1 -> 2 

– 1 -> 7 

– 5 -> 1 

– 5 -> 9 

– 0 -> 0 

– 3 

– 4 

– 7 

– 8 

– 9 

 

 

 

 

Bit Array 

1 

1 

1 

0 

0 

0 

0 

1 

0 

1 

Intermediate 
Table 

offset = 0 

reseed = 1 

0 

0 

0 

reseed = 1 

0 

0 

0 

0 
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Stage 5 

• From largest to smallest 

– Armadillo 

– Frog 

– Bird 

– Horse 

– Iguana 

– Elephant 

– Cat 

– Jaguar 

– Dog 

– Garage 

 

 

– 1 -> 2 

– 1 -> 7 

– 5 -> 1 

– 5 -> 9 

– 0 -> 0 

– 3 -> 0 

– 4 

– 7 

– 8 

– 9 

 

 

 

 

Bit Array 

1 

1 

1 

1 

0 

0 

0 

1 

0 

1 

Intermediate 
Table 

offset = 0 

reseed = 1 

0 

offset = 0 

0 

reseed = 1 

0 

0 

0 

0 
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Stage 5 

• From largest to smallest 

– Armadillo 

– Frog 

– Bird 

– Horse 

– Iguana 

– Elephant 

– Cat 

– Jaguar 

– Dog 

– Garage 

 

 

– 1 -> 2 

– 1 -> 7 

– 5 -> 1 

– 5 -> 9 

– 0 -> 0 

– 3 -> 0 

– 4 -> 0 

– 7 

– 8 

– 9 

 

 

 

 

Bit Array 

1 

1 

1 

1 

1 

0 

0 

1 

0 

1 

Intermediate 
Table 

offset = 0 

reseed = 1 

0 

offset = 0 

offset = 0 

reseed = 1 

0 

0 

0 

0 
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Stage 5 

• From largest to smallest 

– Armadillo 

– Frog 

– Bird 

– Horse 

– Iguana 

– Elephant 

– Cat 

– Jaguar 

– Dog 

– Garage 

 

 

– 1 -> 2 

– 1 -> 7 

– 5 -> 1 

– 5 -> 9 

– 0 -> 0 

– 3 -> 0 

– 4 -> 0 

– 7 -> 5 

– 8 

– 9 

 

 

 

 

Bit Array 

1 

1 

1 

1 

1 

1 

0 

1 

0 

1 

Intermediate 
Table 

offset = 0 

reseed = 1 

0 

offset = 0 

offset = 0 

reseed = 1 

0 

offset = -2 

0 

0 
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Stage 5 

• From largest to smallest 

– Armadillo 

– Frog 

– Bird 

– Horse 

– Iguana 

– Elephant 

– Cat 

– Jaguar 

– Dog 

– Garage 

 

 

– 1 -> 2 

– 1 -> 7 

– 5 -> 1 

– 5 -> 9 

– 0 -> 0 

– 3 -> 0 

– 4 -> 0 

– 7 -> 5 

– 8 -> 6 

– 9 

 

 

 

 

Bit Array 

1 

1 

1 

1 

1 

1 

1 

1 

0 

1 

Intermediate 
Table 

offset = 0 

reseed = 1 

0 

offset = 0 

offset = 0 

reseed = 1 

0 

offset = -2 

offset = -2 

0 
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Stage 5 

• From largest to smallest 

– Armadillo 

– Frog 

– Bird 

– Horse 

– Iguana 

– Elephant 

– Cat 

– Jaguar 

– Dog 

– Garage 

 

 

– 1 -> 2 

– 1 -> 7 

– 5 -> 1 

– 5 -> 9 

– 0 -> 0 

– 3 -> 0 

– 4 -> 0 

– 7 -> 5 

– 8 -> 6 

– 9 -> 8 

 

 

 

 

Bit Array 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

Intermediate 
Table 

offset = 0 

reseed = 1 

0 

offset = 0 

offset = 0 

reseed = 1 

0 

offset = -2 

offset = -2 

offset = -1 
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