
Shepard - A Fast Exact
Match Short Read Aligner

Chad Nelson, Kevin Townsend, Bhavani Rao, Phillip Jones, Joseph Zambreno

Department of Electrical and Computer Engineering

Iowa State University

Ames, IA, USA

(cnel711, ktown, bhavani, phjones, zambreno) @iastate.edu

1

Overview

• The Challenge

• What is Shepard?

– Software for Minimal Perfect Hash Table Creation

– FPGA hardware pipeline for fast Hash Table lookups

• How fast is it?

• What’s next?

2

The Challenge

• Align millions of short DNA sequences to a reference
genome.

• Current aligners (simplified):

• Our Solution:

– One giant hash table

3

What is a MPH?

• MPH = Minimal Perfect Hash

• Given a fixed set of keys…

– Perfect Hashes have no collisions

– Minimal Perfect Hashes contain no empty buckets (they are
memory efficient)

• For large sets of keys, you can create a general MPH in
O(n) time.

– General MPH algorithms require using an intermediate table.

– The intermediate table is the MPH.

4

Minimal Perfect Hash Function Example

• Hash the key once to retrieve a few bits of information
stored in the intermediate table

• Do one of the following:

– Rehash with the new seed from the intermediate table (any
buckets that had a collision would be rehashed*)

– Add the offset from the intermediate table to the initial index.

• The MPH is created by choosing values for the
intermediate table so that a given set of keys will not
collide!

5

Minimal Perfect Hash Example

6

Shepard’s Software

• Differences between our algorithm and other
general purpose MPH algorithms (CHD)

– CHD compresses the intermediate table down to
between 2 and 4 bits per entry

– Shepard does not compress (no need); if entries are 8
byte aligned, there are 20 bits per entry available for
the intermediate table

7

Speed of Shepard’s Hash Table Construction

• Current MPH creation
using C code (CHD)

– 800,000 entries / sec
*only 20 million entries

• Shepard MPH C code

– 300,000 entries / sec
*using 2.8 billion entries

– For 2.8 billion entries,
takes ~2.5 hours

Graph from: Hash, displace, and compress

Djamal Belazzougui et al

8

Future Work

• Hardware Pipeline for Hash Table Creation

– The 6 stages for hash table creation are
simple for-loops

– Assuming:
• ~40 memory operations per entry in construction

• Application is memory bound

• Convey HC-1 can perform 10 billion memory ops / sec

– We could create the hash table in about 12 seconds, more
than 250x faster than CHD

– Concurrency Issues

9

Software Implementation

10

Software Implementation

• Speed

– Single threaded:
• 1,000,000 reads / second (using total program execution time)

– Performance increases when using multiple threads

11

The Convey HC-1

12

The Convey HC-1

13

Convey Custom AE Development Process

• It’s simple!

• Take your original program, pull out a kernel written in
C/C++

• Turn the kernel into a CAE instruction (define ISA)

• Write a software simulator of the program

– Emulates custom hardware

– Validates memory accesses

– Validates AEG registers

• Write hardware description in Verilog or VHDL

– Use the software simulator to test your design (quick)

– Build a bitfile (slow)

14

Hardware Implementation

15

Hash Function Pipeline

• Jenkin’s Spooky Hash

• Fixed the pipeline specifically for 100 base pair reads
(25 bytes)

• Hash function consists of rotations, additions, and XOR

16

Hash Function Pipeline Implementation

17

Hash Function Pipeline Implementation

18

Speed

• 350,000,000 reads per second

• Exact matches only!

• % aligned depends on the quality of the reference genome and
the read data

• Had we used better read data (such as the data used in the
SOAP3 paper), the % aligned would be as high as 60.3%

 19

http://bioinformatics.oxfordjournals.org/content/28/6/878/T1.expansion.html

Future Work

• Let’s update the pipeline to allow mismatches!

• The idea:
– Split the read into n parts. Use a hash table to lookup the index of

these parts.

– Compare the indices of the parts. If any of the indices match, we
can compare the read to the genome to see how many mismatches
occurred!

• The time cost lies in the extra 2*n memory operations that
must be performed.
– Our original design only used 12 of the 16 memory controllers, so if

n=3, we would incur no time penalty!

– We get a “free lunch” by using all of the available resources.

20

Future Work

100 base pair read

1/nth of the read 1/nth of the read 1/nth of the read

Index Index Index

Compare Indices

Hash Table Lookup Hash Table Lookup Hash Table Lookup

21

Future Work Example

AAAAAAAAAACCCCGCCCCCTTTTTTTTTT (Read length = 30)

AAAAAAAAAA CCCCGCCCCC TTTTTTTTTT

1000 2351 1020

Hash Table Lookup Hash Table Lookup Hash Table Lookup

Compare Indices

Subtract 10 Subtract 20 Subtract 0

22

Future Work Example

1000 2351 1020

Compare Indices

Subtract 10 Subtract 20 Subtract 0

Index 1000 matched more than
one part of the read!

AAAAAAAAAACCCCGCCCCCTTTTTTTTTT AAAAAAAAAACCCCCCCCCCTTTTTTTTTT

Let’s pull 30 base pairs from the
reference genome at index 1000.

Compare Read with Genome
23

Future Work Example

• The comparison of the genome and a read is fairly
simple in hardware for mismatches:

– XOR the genome with the read

– Count the number of 1’s. If all 0’s, it’s an exact match.

• It becomes slightly more complex for
insertions/deletions, but the same approach can be
taken for comparison

24

Future Work Risks

• What affect will the presence of duplicates have on the
alignment %?

– At 100 base pairs, 2.36% of the genome is a duplicate of itself.

– At 36 base pairs, 11% of the genome is a duplicate of itself.

• Let’s test in software and find out!

25

Conclusion (1/2)

• We implemented our own software to create MPH table:

– Our Speed: 300,000 entries / sec

– Other software (CHD): 800,000 entries / sec

• Future Work

– Increase the speed to 250,000,000 entries / sec

– This would allow us to make the pre-processing step part of the
alignment process!

– Instead of using a generic human reference genome, people may be able to
use the DNA sequence of a blood family member as a reference in order to
increase the percentage of exact matches.

– The multi-port cache is useful IP for future projects utilizing the Convey HC-1
(allows atomic read-write)

 26

Conclusion (2/2)

• We implemented our own hardware for read alignment:
– Speed: 350,000,000 reads / sec

– Alignment: 25%

– About 60x speedup over SOAP3 (GPU)

– Over 100,000x speedup over Bowtie (CPU)

– Con: exact match only

• Future Work
– Increase the alignment percentage by gaining the ability to detect

mismatches, insertions, and deletions using the hashing approach.

– This would make the project applicable to real-world sequence
alignment. We can alter the pipeline without loosing too much
speed.

27

Questions

28

Future Work

29

Future Work - Concurrency Solution

• Divide the hash table and keys in four, one for each of
the four FPGAs (AEs) on the Convey HC-1

– Use the first two bits of the key to separate the hash table

– Need to keep track of the size of each hash table, though they
should be roughly the same size

– This gets rid of AE to AE concurrency issues by separating the
problem

• For stages 2, 4, and 5, implement a cache on each AE for
handling the rare case of a concurrency issues.

30

Future Work - The Cache

Cache Crossbar-Switch

Cache
Port

Cache
Port

Cache
Port

Cache
Port

Cache
Port

Cache
Port …

Cache

MC0

Cache

MC1

Lock Order
Queue

Lock Order
Queue

Cache

MC2

Cache

MC3

Lock Order
Queue

Lock Order
Queue

Cache

MC4

Cache

MC7

Lock Order
Queue

Lock Order
Queue

…

…

…

31

Future Work - The Cache

• 16 Cache ports
• Use the Write Complete interface
• No crossbar, no read order queue, no strong order queue
• Write back on replace
• The cache would need the ability to Lock certain cache lines to a

given Cache Port. Store the lock with the cache line.

• Lock Order Queue
– If a request for a memory address comes in, and the cache is locked, the

request waits until it is unlocked

• The cache will provide an infrastructure that we can use more
generally in other projects utilizing the Convey HC-1. It allows
strongly-ordered memory operations across multiple Memory
Controllers.

32

Construction Algorithm Visualized!

33

Algorithm

• Stage 1 (create unique)

– Create a list of all N of your <key, value> pairs to be added to
the hash table

• Stage 2

– Hash every key into a bucket to see which spaces in the hash
table will have collisions

– This amounts to having an array of size N initialized to all
zeros. Then, you hash every key and increment the value at
that index.

• Stage 2a

– Count the number of buckets of each size. Since the max
bucket size is small (< 20), this can be done during Stage 2.

34

Algorithm (Continued)

• Stage 3 (sorting)

– Sort the keys by bucket size (largest to smallest)

– Using the collision count values from stage 2 and the size of
each bucket, this can be done in O(N) time.

• Stage 4 (reseed big buckets)

– For each bucket size >= 2, starting with the largest, reseed the
bucket

– This involves initializing an bit array with all 0’s.

– For each bucket (contains 2 or more keys), rehash all the keys
from the bucket with a new seed. Check the bit array that all
keys have a spot in the final array

– Store the new seed in the intermediate table.

35

Algorithm (Continued)

• Stage 5 (displace singular buckets)

– For each bucket size = 1, find the next available empty space in
the bit array

– Place the key in this position, recording the offset from the
original location in the intermediate table

• Stage 6 (add values to hash table)

– The intermediate table is your a MPHF

– Simply place the values in the final output table.

36

Example

• We are going to create a MPH Table for the following
keys:
– Armadillo

– Bird

– Cat

– Dog

– Elephant

– Frog

– Garage

– Horse

– Iguana

– Jaguar

37

Stage 2

• Keys:

• Hash(seed=0)

Counts

0

0

0

0

0

0

0

0

0

0

Bucket Size Number

0 10

1 0

2 0

38

Stage 2

• Keys:

– Armadillo

• Hash(seed=0)

– 1

Counts

0

1

0

0

0

0

0

0

0

0

Bucket Size Number

0 9

1 1

2 0

39

Stage 2

• Keys:

– Armadillo

– Bird

• Hash(seed=0)

– 1

– 5

Counts

0

1

0

0

0

1

0

0

0

0

Bucket Size Number

0 8

1 2

2 0

40

Stage 2

• Keys:

– Armadillo

– Bird

– Cat

• Hash(seed=0)

– 1

– 5

– 4
Counts

0

1

0

0

1

1

0

0

0

0

Bucket Size Number

0 7

1 3

2 0

41

Stage 2

• Keys:

– Armadillo

– Bird

– Cat

– Dog

• Hash(seed=0)

– 1

– 5

– 4

– 8

Counts

0

1

0

0

1

1

0

0

1

0

Bucket Size Number

0 6

1 4

2 0

42

Stage 2

• Keys:

– Armadillo

– Bird

– Cat

– Dog

– Elephant

• Hash(seed=0)

– 1

– 5

– 4

– 8

– 3

Counts

0

1

0

1

1

1

0

0

1

0

Bucket Size Number

0 5

1 5

2 0

43

Stage 2

• Keys:

– Armadillo

– Bird

– Cat

– Dog

– Elephant

– Frog

• Hash(seed=0)

– 1

– 5

– 4

– 8

– 3

– 1

Counts

0

2

0

1

1

1

0

0

1

0

Bucket Size Number

0 5

1 4

2 1

44

Stage 2

• Keys:

– Armadillo

– Bird

– Cat

– Dog

– Elephant

– Frog

– Garage

• Hash(seed=0)

– 1

– 5

– 4

– 8

– 3

– 1

– 9

Counts

0

2

0

1

1

1

0

0

1

1

Bucket Size Number

0 4

1 5

2 1

45

Stage 2

• Keys:

– Armadillo

– Bird

– Cat

– Dog

– Elephant

– Frog

– Garage

– Horse

• Hash(seed=0)

– 1

– 5

– 4

– 8

– 3

– 1

– 9

– 5

Counts

0

2

0

1

1

2

0

0

1

1

Bucket Size Number

0 4

1 4

2 2

46

Stage 2

• Keys:

– Armadillo

– Bird

– Cat

– Dog

– Elephant

– Frog

– Garage

– Horse

– Iguana

• Hash(seed=0)

– 1

– 5

– 4

– 8

– 3

– 1

– 9

– 5

– 0

Counts

1

2

0

1

1

2

0

0

1

1

Bucket Size Number

0 3

1 5

2 2

47

Stage 2

• Keys:

– Armadillo

– Bird

– Cat

– Dog

– Elephant

– Frog

– Garage

– Horse

– Iguana

– Jaguar

• Hash(seed=0)

– 1

– 5

– 4

– 8

– 3

– 1

– 9

– 5

– 0

– 7

Counts

1

2

0

1

1

2

0

1

1

1

Bucket Size Number

0 2

1 6

2 2

48

Stage 2

• Keys:

– Armadillo

– Bird

– Cat

– Dog

– Elephant

– Frog

– Garage

– Horse

– Iguana

– Jaguar

• Hash(seed=0)

– 1

– 5

– 4

– 8

– 3

– 1

– 9

– 5

– 0

– 7

Counts

1

2

0

1

1

2

0

1

1

1

Bucket Size Number

0 2

1 6

2 2

49

Stage 3

• Keys:

– Armadillo

– Bird

– Cat

– Dog

– Elephant

– Frog

– Garage

– Horse

– Iguana

– Jaguar

Counts

1

2

0

1

1

2

0

1

1

1

Bucket Size Number

0 2

1 6

2 2

New Index

-

-

-

-

-

-

-

-

-

-

50

Stage 3

• Keys:

– Armadillo

– Bird

– Cat

– Dog

– Elephant

– Frog

– Garage

– Horse

– Iguana

– Jaguar

0

1

2

3

4

5

6

7

8

9

Counts

1

2

0

1

1

2

0

1

1

1

Bucket Size Number

0 2

1 6

2 2

New Index

4

-

-

-

-

-

-

-

-

-

51

Stage 3

• Keys:

– Armadillo

– Bird

– Cat

– Dog

– Elephant

– Frog

– Garage

– Horse

– Iguana

– Jaguar

0

1

2

3

4

5

6

7

8

9

Counts

1

2

0

1

1

2

0

1

1

1

Bucket Size Number

0 2

1 6

2 2

New Index

4

0

-

-

-

-

-

-

-

-

52

Stage 3

• Keys:

– Armadillo

– Bird

– Cat

– Dog

– Elephant

– Frog

– Garage

– Horse

– Iguana

– Jaguar

0

1

2

3

4

5

6

7

8

9

Counts

1

2

0

1

1

2

0

1

1

1

Bucket Size Number

0 2

1 6

2 2

New Index

4

0

-

5

-

-

-

-

-

-

53

Stage 3

• Keys:

– Armadillo

– Bird

– Cat

– Dog

– Elephant

– Frog

– Garage

– Horse

– Iguana

– Jaguar

0

1

2

3

4

5

6

7

8

9

Counts

1

2

0

1

1

2

0

1

1

1

Bucket Size Number

0 2

1 6

2 2

New Index

4

0

-

5

6

-

-

-

-

-

54

Stage 3

• Keys:

– Armadillo

– Bird

– Cat

– Dog

– Elephant

– Frog

– Garage

– Horse

– Iguana

– Jaguar

0

1

2

3

4

5

6

7

8

9

Counts

1

2

0

1

1

2

0

1

1

1

Bucket Size Number

0 2

1 6

2 2

New Index

4

0

-

5

6

2

-

-

-

-

55

Stage 3

• Keys:

– Armadillo

– Bird

– Cat

– Dog

– Elephant

– Frog

– Garage

– Horse

– Iguana

– Jaguar

0

1

2

3

4

5

6

7

8

9

Counts

1

2

0

1

1

2

0

1

1

1

Bucket Size Number

0 2

1 6

2 2

New Index

4

0

-

5

6

2

-

7

-

-

56

Stage 3

• Keys:

– Armadillo

– Bird

– Cat

– Dog

– Elephant

– Frog

– Garage

– Horse

– Iguana

– Jaguar

0

1

2

3

4

5

6

7

8

9

Counts

1

2

0

1

1

2

0

1

1

1

Bucket Size Number

0 2

1 6

2 2

New Index

4

0

-

5

6

2

-

7

8

-

57

Stage 3

• Keys:

– Armadillo

– Bird

– Cat

– Dog

– Elephant

– Frog

– Garage

– Horse

– Iguana

– Jaguar

0

1

2

3

4

5

6

7

8

9

Counts

1

2

0

1

1

2

0

1

1

1

Bucket Size Number

0 2

1 6

2 2

New Index

4

0

-

5

6

2

-

7

8

9

58

Stage 3

• Keys:

– Armadillo

– Bird

– Cat

– Dog

– Elephant

– Frog

– Garage

– Horse

– Iguana

– Jaguar

• Sorted Keys:

– Armadillo

– Frog

– Bird

– Horse

– Iguana

– Elephant

– Cat

– Jaguar

– Dog

– Garage

– 1

– 5

– 4

– 8

– 3

– 1

– 9

– 5

– 0

– 7

Counts

1

2

0

1

1

2

0

1

1

1

Bucket Size Number

0 2

1 6

2 2

New Index

4

0

-

5

6

2

-

7

8

9

59

Stage 4

• From largest to smallest

– Armadillo

– Frog

– Bird

– Horse

– Iguana

– Elephant

– Cat

– Jaguar

– Dog

– Garage

– 1 -> 2

– 1 -> 7

– 5

– 5

– 0

– 3

– 4

– 7

– 8

– 9

Bit Array

0

0

0

0

0

0

0

0

0

0

Intermediate
Table

0

0

0

0

0

0

0

0

0

0

60

Stage 4

• From largest to smallest

– Armadillo

– Frog

– Bird

– Horse

– Iguana

– Elephant

– Cat

– Jaguar

– Dog

– Garage

– 1 -> 2

– 1 -> 7

– 5

– 5

– 0

– 3

– 4

– 7

– 8

– 9

Bit Array

0

0

1

0

0

0

0

1

0

0

Intermediate
Table

0

reseed = 1

0

0

0

0

0

0

0

0

61

Stage 4

• From largest to smallest

– Armadillo

– Frog

– Bird

– Horse

– Iguana

– Elephant

– Cat

– Jaguar

– Dog

– Garage

– 1 -> 2

– 1 -> 7

– 5 -> 1

– 5 -> 9

– 0

– 3

– 4

– 7

– 8

– 9

Bit Array

0

1

1

0

0

0

0

1

0

1

Intermediate
Table

0

reseed = 1

0

0

0

reseed = 1

0

0

0

0

62

Stage 5

• From largest to smallest

– Armadillo

– Frog

– Bird

– Horse

– Iguana

– Elephant

– Cat

– Jaguar

– Dog

– Garage

– 1 -> 2

– 1 -> 7

– 5 -> 1

– 5 -> 9

– 0 -> 0

– 3

– 4

– 7

– 8

– 9

Bit Array

1

1

1

0

0

0

0

1

0

1

Intermediate
Table

offset = 0

reseed = 1

0

0

0

reseed = 1

0

0

0

0

63

Stage 5

• From largest to smallest

– Armadillo

– Frog

– Bird

– Horse

– Iguana

– Elephant

– Cat

– Jaguar

– Dog

– Garage

– 1 -> 2

– 1 -> 7

– 5 -> 1

– 5 -> 9

– 0 -> 0

– 3 -> 0

– 4

– 7

– 8

– 9

Bit Array

1

1

1

1

0

0

0

1

0

1

Intermediate
Table

offset = 0

reseed = 1

0

offset = 0

0

reseed = 1

0

0

0

0

64

Stage 5

• From largest to smallest

– Armadillo

– Frog

– Bird

– Horse

– Iguana

– Elephant

– Cat

– Jaguar

– Dog

– Garage

– 1 -> 2

– 1 -> 7

– 5 -> 1

– 5 -> 9

– 0 -> 0

– 3 -> 0

– 4 -> 0

– 7

– 8

– 9

Bit Array

1

1

1

1

1

0

0

1

0

1

Intermediate
Table

offset = 0

reseed = 1

0

offset = 0

offset = 0

reseed = 1

0

0

0

0

65

Stage 5

• From largest to smallest

– Armadillo

– Frog

– Bird

– Horse

– Iguana

– Elephant

– Cat

– Jaguar

– Dog

– Garage

– 1 -> 2

– 1 -> 7

– 5 -> 1

– 5 -> 9

– 0 -> 0

– 3 -> 0

– 4 -> 0

– 7 -> 5

– 8

– 9

Bit Array

1

1

1

1

1

1

0

1

0

1

Intermediate
Table

offset = 0

reseed = 1

0

offset = 0

offset = 0

reseed = 1

0

offset = -2

0

0

66

Stage 5

• From largest to smallest

– Armadillo

– Frog

– Bird

– Horse

– Iguana

– Elephant

– Cat

– Jaguar

– Dog

– Garage

– 1 -> 2

– 1 -> 7

– 5 -> 1

– 5 -> 9

– 0 -> 0

– 3 -> 0

– 4 -> 0

– 7 -> 5

– 8 -> 6

– 9

Bit Array

1

1

1

1

1

1

1

1

0

1

Intermediate
Table

offset = 0

reseed = 1

0

offset = 0

offset = 0

reseed = 1

0

offset = -2

offset = -2

0

67

Stage 5

• From largest to smallest

– Armadillo

– Frog

– Bird

– Horse

– Iguana

– Elephant

– Cat

– Jaguar

– Dog

– Garage

– 1 -> 2

– 1 -> 7

– 5 -> 1

– 5 -> 9

– 0 -> 0

– 3 -> 0

– 4 -> 0

– 7 -> 5

– 8 -> 6

– 9 -> 8

Bit Array

1

1

1

1

1

1

1

1

1

1

Intermediate
Table

offset = 0

reseed = 1

0

offset = 0

offset = 0

reseed = 1

0

offset = -2

offset = -2

offset = -1

68

