
Shepard: A Fast Exact Match Short Read Aligner

Chad Nelson, Kevin Townsend, Bhavani Satyanarayana Rao, Phillip Jones, Joseph Zambreno

Department of Electrical and Computer Engineering

Iowa State University

Ames, IA, USA

{cnel711, ktown, bhavani, phjones, zambreno}@iastate.edu

Abstract—The mapping of many short sequences of DNA,
called reads, to a long reference genome is an common task
in molecular biology. The task amounts to a simple string
search, allowing for a few mismatches due to mutations and
inexact read quality. While existing solutions attempt to align
a high percentage of the reads using small memory footprints,
Shepard is concerned with only exact matches and speed. Using
the human genome, Shepard is on the order of hundreds of
thousands of times faster than current software implementations
such as SOAP2 or Bowtie, and about 60 times faster than GPU
implementations such as SOAP3.

Shepard contains two components: a software program to
preprocess a reference genome into a hash table, and a hardware
pipeline for performing fast lookups. The hash table has one
entry for each unique 100 base pair sequence that occurs in
the reference genome, and contains the index of last occurrence
and the number of occurrences. To reduce the hash table size,
a minimal perfect hash table is used. The hardware pipeline
was designed to perform hash table lookups very quickly, on the
order of 600 million lookups per second, and was implemented
on a Convey HC-1 high performance reconfigurable computing
system. Shepard streams all of the short reads through a custom
hardware pipeline and writes the alignment data (index of last
occurrence and number of occurrences) to a binary results array.

Keywords-FPGA-based Short Read Aligner; Minimal Perfect
Hash; Hardware Hash Function

I. INTRODUCTION

We are in a golden era of DNA research. After the first

human genome was sequenced in 2003 [1], the next genera-

tion of sequencing technologies were developed with higher

throughput and lower costs. The machines operate by breaking

a person’s genome into smaller fragments, or reads. Since

humans share 99.9% of their DNA, a reference genome is used

to help align the reads in the correct order. Many reads, copies

of the same genome, are aligned to improve the quality of the

process. These techniques have produced a massive amount of

data needing alignment.

The 2012 MEMOCODE design contest [2] was focused

on the exact matching of 100 base pair short reads to a

3.1 billion base pair human genome. The contest made some

simplifications, presumably to allow teams to focus on creating

a fast solution. Such simplifications included:

• Performing only exact matches

• Ignoring quality data

• Using a packed-binary representation of the reads

• Short reads always had the same length (in this case, 100

base pairs)

Teams were provided with approximately one month to

develop solutions and were encouraged to use both field

programmable gate arrays (FPGAs) and GPUs. The pri-

mary and secondary contest categories were speed and cost-

performance. Our first place solution optimized for memory

bandwidth; we chose hash table lookups because they min-

imized overheads in memory bandwidth and we chose an

FPGA implementation using the Convey HC-1 because of its

large available memory bandwidth of 80 GB/sec.

The remainder of this paper is organized as follows. Section

II discusses prior work on short read alignment programs.

Section III discusses our approach of using minimal perfect

hashing and how we preprocess the reference genome. Sec-

tion IV discusses the actual implementation of the hardware

pipeline on the Convey HC-1. Section V shows our results.

II. RELATED WORK

Early solutions for DNA sequence alignment initially used

a database of common sequences or a hash table to help align

new data. BLAST [3] was one of the first tools available.

MAQ [4] was an implementation that provided quality data

along with its alignment results. Unfortunately, MAQ become

obsolete because of its slow alignment speed when the new

generation of sequencing machines became available.

A newer approach, used in both SOAP2 [5] and Bowtie [6],

is to index a reference genome using an FM Index [7] and

compress using a Bowler-Wheeler transformation [8]. This

scheme allows the genome to be compressed, reducing the

memory footprint, and allowing use of commodity hardware.

Unlike a hash table approach, indexing in this way creates a

solution where getting the alignment data is the result of a

pointer-based tree transversal. In cases of a mismatch, time-

consuming backtracking is used to find segments that may

match with high probability. Applications like SOAP2 and

Bowtie differ slightly in the way that they construct their index

of the reference genome, but are both limited by memory

bandwidth because of the tree traversal. SOAP3 [9] uses the

same approach, but uses the increased memory bandwidth of

GPUs to increase speed.

Our approach differs from prior implementations in a num-

ber of important ways. Shepard ignores considerations such

as memory usage and alignment quality. By preprocessing

the reference genome into a hash table, alignment of arbitrary

reads is a simple hash table lookup.

Hash Table

Keys

Intermediate

Table

1 2 3 4 5 60 ... n-1

1 2 3 4 5 60 ... n-1

1* -2 1 1 1*0 0

B C D E F GA H I

B C D A F E G I H

Fig. 1. An example of a Minimal Perfect Hash (MPH) table. Each key
is initially hashed once to retrieve a few bits of information stored in an
intermediate table. The key is then either rehashed with the new seed from
the intermediate table, or the offset from the intermediate table is added to
the initial index. The MPH is created by choosing values in the intermediate
table so that a given set of keys will not collide.

III. APPROACH

The problem with a hash table approach is the size of the

table. The table size is proportional to the size of the reference

genome since there would be one entry per unique 100 base

pair sequence in the reference. We used a reference genome

from the 1000 genomes project [10] which contained about 2.8

billion unique 100 base pair segments. This means that every

byte of data per entry increases the size of the hash table by

2.8 GB. If we were to store the key (the short read) in the hash

table, we would need about 32 bytes per entry, or a table size

of over 80 GB. In addition, any collisions would necessitate

a linked list type of structure for collision handling, resulting

in more increases in the size of the table.

A. Minimal Perfect Hash Function

Shepard’s solution to the large size of hash tables is to use

a minimal perfect hash. A minimal perfect hash is one with

no collisions and no empty slots, but requires a fixed set of

keys known in advance. Shepard avoids the need for storing

any collision handling in the hash table by using a minimal

perfect hash to avoid collisions.

A minimal perfect hash requires storing a few bits per entry.

To briefly summarize its use, the minimal perfect hash function

Shepard uses requires first looking up a seed or offset value

in an intermediate table, then using this seed or offset to

compute the actual index into the hash table. This is displayed

in Figure 1. The construction of the minimal perfect hash table

is discussed briefly below.

The first step is to find all the entries that need to be stored

in the hash table. This can be done by hashing each 100 base

pair word in the reference genome in a number of rounds,

throwing away duplicates and storing collisions for processing

in the next round.

With a set of known keys, we can construct a minimal

perfect hash using a generalized method called hash and

displace. More details can be found in both [11] and [12].

First, all the keys are hashed into buckets. If a key collides with

another key, the bucket will contain multiple keys. Buckets are

then sorted based on how many keys they contain. Starting

with the largest buckets, the keys are reseeded such that they

64 bit entry

index in genome count i value

 o!set "ag

32+11 bit

hash table

(values only, no keys)

1+20 bit

intermediate table

(reseed or o!set)

Fig. 2. An entry in the Minimal Perfect Hash table. The table is an array
with one 8 byte entry per key. The intermediate table is stored in the 21 least
significant bits and is used to find a unique index into the table for each key.
The first 43 bits contain the value associated with the key.

find an empty spot in the hash table. The reseed value is stored

in an intermediate table. Once all buckets containing two or

more keys have been reseeded, buckets containing just one key

are placed into open spaces in the hash table. The offset from

their original location is recorded in the intermediate table.

The intermediate table provides a minimal perfect hash for

the given key set, and can now be used to add values to the

table to complete the key-value association.

It should be noted that any short read will give a hash into a

minimal perfect hash table, whether it is a member of the hash

table or not. A check for existence is needed. Conveniently,

Shepard uses the index of last occurrence to check the binary

packed form of the reference genome to see if the short read

is an actual match to the reference genome. Thus, the need to

store the keys in the hash table is unnecessary.

Using a minimal perfect hash function with the reference

genome [10] created a 22.5 GB hash table containing 2.8

billion 8-byte entries. If less memory is required, a possible

option is the create hash tables for each chromosome rather

than the entire reference genome. The layout of each entry is

described in Figure 2.

IV. IMPLEMENTATION

The hardware pipeline aligns reads in five stages:

Algorithm 1 Pseudocode of the Shepard Pipeline

1: procedure ALIGN(reads, genome, hashtable, results)

2: for (i = 0; i < length(reads); i + +) do
3: r ← reads[i]; ⊲ Stage 1

4: h← hash(r, seed = 0); ⊲ Stage 2

5: ivalue← intermediateTable[h];
6: if (ivalue is an offset) then ⊲ Stage 3

7: index← hash(r, seed = 0) + ivalue;
8: else

9: index← hash(r, seed = ivalue);
10: end if

11: entry ← hashtable[index];
12: check ← genome[entry.index]; ⊲ Stage 4

13: if (r == check) then ⊲ Stage 5

14: results[i]← entry;
15: else

16: results[i]← NULL;
17: end if

18: end for

19: end procedure

MC

MC

MC

MC

MC

MC

MC

FIFO

C

H
a

rd
w

a
re

 H
a

sh
 F

u
n

ct
io

n

FIFO

F

FIFO

H

FIFO

H

FIFO

H

FIFO

B

+

+

+

FIFO

E
MC+ FIFO

A

FIFO

H

FIFO

H

S
h

if
te

r

FIFO

G

H
a

rd
w

a
re

 H
a

sh
 F

u
n

ct
io

n =

+

+

+

+

+

MC

MC
FIFO

A
+

MC
FIFO

A
+

MC
FIFO

A
+

Counter

Counter

Counter

Counter

Stage 1
Load Read

Stage 2
Get Intermediate

Stage 3
Calculate Perfect Hash

Stage 4
Load from Genome

Stage 5
Check and Store Result

200 200 200

200

32+11

w
ri

te
 e

n
a

b
le

read_base_address table_base_address genome_base_addressMC Memory Controller output_base_address

+

Counter0FIFO

D

Fig. 3. Shepard’s hardware hash table lookup pipeline is broken into five stages, shown here flowing left to right. In stage 1, a bank of four counters and the
base address of the read data is used to calculate the address for a given read. These addresses are used to load short reads from four memory controller ports.
After a memory latency of about 100 cycles, stage 2 hashes a short read to obtain an index for retrieving a value from the intermediate table. In stage 3, the
value from intermediate table allows Shepard to compute an index that is guaranteed not to collide with other entries in the table (see Section III on minimal
perfect hashes). The value is either a new seed value for the hash function, or an offset. The unique index is calculated and used to load the value from the
hash table. In stage 4, the index in the genome loaded from the hash table is used to load the corresponding 100 base pairs from the reference genome. In
stage 5, the reference genome is compared to the read. If they match, the index of occurrence in the genome and number of occurrences are recorded in an
output table in memory.

Most of the computation of the algorithm occurs in the hash

function. Jenkin’s Spooky Hash [13] was chosen because it is

both fast in software and easy to implement in hardware due to

its reliance on only shifts, adds, and XOR operations. Shepard

uses a slimmed down version Jenkins’ Spooky Hash that has

been stripped to work with only keys of size 25 bytes (100 base

pairs). By stripping unnecessary branches and instructions,

each hash requires 23 rotations, 23 XORs, 27 additions, and

1 mod operation. By grouping operations together, a 34 stage

pipeline hasher was created.

A. Convey HC-1

Shepard’s hardware pipeline was built for use with the

Convey HC-1 platform containing a minimum of 32GB of

coprocessor memory. The Convey platform is a hybrid com-

puter, containing a regular motherboard and a coprocessor

board that contains is a set of 14 FPGAs. Eight FPGAs

are wired as memory controllers (MCs), two are used as an

Application Engine Hub (AEH), and the remaining four are

programmable and called Application Engines (AEs). The host

(x86) processor can send the AEH custom instructions, which

will then load a custom bitfile onto the AEs and execute the

instruction. The coprocessor contains its own memory, though

the host processor and coprocessor can share all memory in

a cache coherent manner. More information can be found in

Convey’s documentation.

The distinct competitive advantage that the Convey HC-

1 provides is its actual 80 GB/s of memory bandwidth. In

addition, the Convey system has ”scatter-gather” DIMMs,

allowing random access to memory locations with speed on

par with sequential access to memory. Convey provides a

hardware interface for accessing memory. Each AE is given

access to 16 MC ports, which are multiplexed to the eight

MCs. The AE’s operate at a clock frequency of 150 MHz,

allowing each memory controller port to make 150 million

memory requests per second. Using these memory controllers,

along with Convey’s provided reorder queue and crossbar

switch, greatly simplified the hardware design by allowing

each MC port to access any address and making the data to

flow in order.

V. SHEPARD ARCHITECTURE

The five stages of the hardware pipeline are shown and

described in Figure 3. The set of reads is split into four pieces,

and each AE contains an identical pipeline to process its subset

of the reads.

A. Software Wrapper

To simplify the hardware design process, the host processor

(the x86 processor) does some marshaling data from the hard

disk to the coprocessor memory and printing the data in a

nice format. The reads do go through the host processor since

the coprocessor does not have direct access to the hard drive.

After the coprocessor processes the reads, the result array is

sent back to the host processor memory. The host processor

converts this binary array into the human readable format

specified by the Memocode competition. Aligning the data

took the least amount of time when compared with these other

disk operations. The following lists in order from fastest to

slowest:

1) Alignment (coprocessor)

2) Moving data form and to host and coprocessor memory

3) Output formatting (i.e. sprintf)

4) Disk I/O
VI. RESULTS

Our solution’s runtime is 895 milliseconds for processing all

284,881,619 short read sequences in hardware. The timer starts

before the reads begin streaming to the hardware pipeline, and

ends after the last read’s index and count are written to the

result array. Using alignment speeds from [14] and [9], we

can compare our runtime with other short read aligners:

TABLE I
PERFORMANCE COMPARISON OF POPULAR SHORT READ ALIGNERS.

Tool Platform Speed (reads/s) % Aligned Memory (GB)
MAQ [4] CPU 50 93.2 1.2
SOAP CPU 70 93.8 14.7
SOAP2 [5] CPU 2,000 93.6 5.4
Bowtie [6] CPU 2,500 91.7 2.3
SOAP3 [9] GPU 6,000,000 96.8 3.2
Shepard FPGA 350,000,000 25.2 23.3

The cost of the HC-1 is $67,100. Shepard’s runtime omits

the one time costs associated with creating and loading a

22.5 GB hash table into memory and loading a 780 MB

reference genome to memory. In addition, it does not include

the time it takes to load the reads from disk into memory.

On a commodity server with 48 GB of available memory, the

creation of the hash table took 147 minutes.

Another consideration was Shepard’s use of available hard-

ware resources on the Xilinx Virtex 5 LX330 [15]:

TABLE II
HARDWARE RESOURCE USAGE OF EACH FPGA

Resource Amount Used Available % Used
Block RAM 24 blocks 288 blocks 8.3%
LUT 14,900 207,306 7.2%
Flip-Flops 15.5 Kb 3,420 Kb 0.5%

Convey’s hardware interfaces to the memory controllers and

application engine hub use some resources, but the majority of

the reconfigurable hardware is left unused. However, Shepard’s

runtime is memory bound. The current design uses 12 out

of the 16 available memory controller ports. Putting multiple

pipelines on a single AE in order to use all available memory

bandwidth would increase complexity and lead to only a slight

improvement of performance.

VII. CONCLUSIONS

Currently, most mismatches between the reference genome

and read sequences are from imperfect read quality, not due

to genetic differences. The DNA of two individuals differs by

roughly 0.1%, about one base pair out of a thousand. As DNA

sequencing quality improves, so will the usefulness of exact

match alignment tools such as Shepard. In fact, the alignment

part of the problem disappears from the runtime when using

approaches like Shepard. Indeed, future work will be needed

to pull reads from disk or the network at speeds near 20 GB/s

in order to keep such a hardware pipeline busy.
Additionally, one could increase the speed of the preprocess-

ing step using the Convey HC-1. Instead of using a generic

human reference genome, people may be able to use the DNA

sequence of a blood family member as a reference in order to

increase the percentage of exact matches.
Finally, there are other application domains in which the

Shepherd architecture could be used with minimal modifi-

cation. In 2011, Google developed their own hash function,

CityHash [16], to improve the speed of their hash table lookups

at their data centers, but Shepard would have been orders of

magnitude faster. Other examples include internet data mining,

social graphs, and search optimization.

REFERENCES

[1] S. Levy et al., “The diploid genome sequence of an individual human,”
PLoS Biol, vol. 5, no. 10, 2007.

[2] S. A. Edwards, “MEMOCODE 2012 hardware/software codesign con-
test: DNA sequence aligner,” Mar 2012.

[3] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman,
“Basic local alignment search tool,” Journal of Molecular Biology, vol.
215, no. 3, pp. 403–410, 1990.

[4] H. Li, J. Ruan, and R. Durbin, “Mapping short DNA sequencing reads
and calling variants using mapping quality scores.” Genome Research,
vol. 18, no. 11, pp. 1851–1858, 2008.

[5] R. Li, C. Yu, Y. Li, T.-W. Lam, S.-M. Yiu, K. Kristiansen, and
J. Wang, “SOAP2: an improved ultrafast tool for short read alignment.”
Bioinformatics, vol. 25, no. 15, pp. 1966–1967, 2009.

[6] B. Langmead, C. Trapnell, M. Pop, and S. L. Salzberg, “Ultrafast
and memory-efficient alignment of short DNA sequences to the human
genome,” Genome Biology, vol. 10, no. 3, p. R25, 2009.

[7] P. Ferragina and G. Manzini, “Opportunistic data structures with appli-
cations,” in Proceedings of the 41st Annual Symposium on Foundations
of Computer Science, ser. FOCS ’00. Washington, DC, USA: IEEE
Computer Society, 2000, pp. 390–.

[8] M. Burrows and D. J. Wheeler, “A block-sorting lossless data compres-
sion algorithm,” Tech. Rep., 1994.

[9] SOAP3 alignment time. [Online]. Available: http://www.cs.hku.hk/2bwt-
tools/soap3-dp/

[10] 1000 genomes project: Reference genome. [Online]. Available:
ftp://ftp-trace.ncbi.nih.gov/1000genomes

[11] D. Belazzougui, F. C. Botelho, and M. Dietzfelbinger, “Hash, displace,
and compress,” in Proceedings of the European Symposium on Algo-
rithms (ESA), 2009, pp. 682–693.

[12] S. Hanov. (2011, Mar) Throw away the keys: Easy, minimal perfect hash-
ing. [Online]. Available: http://stevehanov.ca/blog/index.php?id=119

[13] B. Jenkins. (2012, March) Spookyhash: a 128-bit noncryptographic
hash. [Online]. Available: http://burtleburtle.net/bob/hash/spooky.html

[14] O. Knodel, T. Preusser, and R. Spallek, “Next-generation massively
parallel short-read mapping on FPGAs,” in Proceedings of the Inter-
national Conference on Application-Specific Systems, Architectures and

Processors (ASAP), Sept 2011, pp. 195–201.

[15] Xilinx. (2009, February) Virtex 5 family overview. [Online]. Available:
http://www.xilinx.com/support/documentation/data sheets/ds100.pdf

[16] G. Pike and J. Alakuijala. (2011, April) Introducing cityhash. [Online].
Available: http://google-opensource.blogspot.com/2011/04/introducing-
cityhash.html

